References
- S.K. Behera, S.-Y. Oh, H.-S. Park, Sorption of triclosan onto
activated carbon, kaolinite and montmorillonite: effects of pH,
ionic strength, and humic acid, J. Hazard. Mater., 179 (2010)
684–691.
- A.B. Dann, A. Hontela, Triclosan: environmental exposure,
toxicity and mechanisms of action, J. Appl. Toxicol., 31 (2011)
285–311.
- D. Sabaliunas, S.F. Webb, A. Hauk, M. Jacob, W.S. Eckhoff,
Environmental fate of triclosan in the river Aire Basin, UK,
Water Res., 37 (2003) 3145–3154.
- G.-G. Ying, R.S. Kookana, Triclosan in wastewaters and
biosolids from Australian wastewater treatment plants,
Environ. Int., 33 (2007) 199–205.
- J. López-Morales, O. Perales-Pérez, F. Román-Velázquez,
Sorption of triclosan onto Tyre Crumb Rubber, Adsorpt. Sci.
Technol., 30 (2012) 831–845.
- S. Zhou, Y. Shao, N. Gao, J. Deng, C. Tan, Equilibrium, kinetic,
and thermodynamic studies on the adsorption of triclosan onto
multi-walled carbon nanotubes, Clean Soil Air Water, 41 (2013)
539–547.
- Y. Tong, B.K. Mayer, P.J. McNamara, Triclosan adsorption using
wastewater biosolids-derived biochar, Environ. Sci. Water Res.
Technol., 2 (2016) 761–768.
- S.F. Fang, P. Pendleton, A. Badalyan, Effects of surface functional
groups of activated carbon on adsorption of triclosan from
aqueous solution, Int. J. Environ. Technol. Manage., 10 (2009)
36–45.
- X. Hu, Z. Cheng, Z. Sun, H. Zhu, Adsorption of diclofenac and
triclosan in aqueous solution by purified multi-walled carbon
nanotubes, Pol. J. Environ. Stud., 26 (2017) 87–95.
- H.H. Cho, H. Huang, K. Schwab, Effects of solution chemistry
on the adsorption of ibuprofen and triclosan onto carbon
nanotubes. Langmuir, 27 (2011) 12960–12967.
- L. Xin, Y. Sun, J. Feng, J. Wang, D. He, Degradation of triclosan
in aqueous solution by dielectric barrier discharge plasma
combined with activated carbon fibers, Chemosphere, 144 (2016)
855–863.
- I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Enhancement of basic
dye adsorption uptake from aqueous solutions using chemically
modified oil palm shell activated carbon, Colloids Surf., A, 318
(2008) 88–96.
- T.S.Y. Choong, T.N. Wong, T.G. Chuah, A. Idris, Film-poreconcentration-
dependent surface diffusion model for the
adsorption of dye onto palm kernel shell activated carbon,
J. Colloid Interface Sci., 301 (2006) 436–440.
- A.R. Hidayu, N. Muda, Preparation and characterization of
impregnated activated carbon from palm kernel shell and
coconut shell for CO2 capture, Procedia Eng., 148 (2016) 106–113.
- A.A. Ismaiel, M.K. Aroua, R. Yusoff, Palm shell activated
carbon impregnated with task-specific ionic-liquids as a novel
adsorbent for the removal of mercury from contaminated water,
Chem. Eng. J., 225 (2013) 306–314.
- A. Jumasiah, T.G. Chuah, J. Gimbon, T.S.Y. Choong, I. Azni,
Adsorption of basic dye onto palm kernel shell activated
carbon: sorption equilibrium and kinetics studies, Desalination,
186 (2005) 57–64.
- S.M. Nomanbhay, K. Palanisamy, Removal of heavy metal from
industrial wastewater using chitosan coated oil palm shell
charcoal, Electron. J. Biotechnol., 8 (2005) 43–53.
- G. Issabayeva, M.K. Aroua, N.M.N. Sulaiman, Removal of
lead from aqueous solutions on palm shell activated carbon,
Bioresour. Technol., 97 (2006) 2350–2355.
- H.L.H. Chong, P.S. Chia, M.N. Ahmad, The adsorption of heavy
metal by Bornean oil palm shell and its potential application
as constructed wetland media, Bioresour. Technol., 130 (2013)
181–186.
- X.J. Lee, L.Y. Lee, S. Gan, S. Thangalazhy-Gopakumar, H.K. Ng,
Biochar potential evaluation of palm oil wastes through slow
pyrolysis: thermochemical characterization and pyrolytic kinetic
studies, Bioresour. Technol., 236 (2017) 155–163.
- J. Bedia, M. Peñas-Garzón, A. Gómez-Avilés, J. Rodriguez,
C.A. Belver, Review on the synthesis and characterization of
biomass-derived carbons for adsorption of emerging contaminants
from water, C J. Carbon Res., 4 (2018) 63.
- D.R. Delgado, A.R. Holguin, F. Martinez, Solution thermodynamics
of triclosan and triclocarban in some volatile organic
solvents, Vitae, 19 (2012) 79–92.
- D.G. Lee, Removal of a synthetic broad-spectrum antimicrobial
agent, triclosan, in wastewater treatment systems: a short
review, Environ. Eng. Res., 20 (2015) 111–120.
- A.A. Sharipova, S.B. Aidarova, N.E. Bekturganova, A. Tleuova,
M. Schenderlein, O. Lygina, S. Lyubchik, R. Miller, Triclosan
as model system for the adsorption on recycled adsorbent
materials, Colloids Surf., A, 505 (2016) 193–196.
- I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Adsorption isotherms,
kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated
carbon, J. Hazard. Mater., 164 (2009) 473–482.
- H. Thangappan, A. Valiya Parambathu, S. Joseph, Surface
characterization and methylene blue adsorption studies on a
mesoporous adsorbent from chemically modified Areca triandra
palm shell, Desal. Wat. Treat., 57 (2016) 21118–21129.
- B.K. Pradhan, N.K. Sandle, Effect of different oxidizing agent
treatments on the surface properties of activated carbons,
Carbon, 37 (1999) 1323–1332.
- O.W. Achaw, A Study of the Porosity of Activated Carbons
Using the Scanning Electron Microscope, In V. Kazmiruk, Ed.,
Scanning Electron Microscopy, IntechOpen, 2012.
- H. Kaur, A. Bansiwal, G. Hippargi, G.R. Pophali, Effect of
hydrophobicity of pharmaceuticals and personal care products
for adsorption on activated carbon: adsorption isotherms,
kinetics and mechanism, Environ. Sci. Pollut. Res., 25 (2018)
20473–20485.
- G. Newcombe, M. Drikas, R. Hayes, Influence of characterised
natural organic material on activated carbon adsorption:
II. Effect on pore volume distribution and adsorption of
2-methylisoborneol, Water Res., 31 (1997) 1065–1073.
- F. Wang, X. Lu, W. Peng, Y. Deng, T. Zhang, Y. Hu, X.-y. Li,
Sorption behavior of bisphenol A and triclosan by graphene:
comparison with activated carbon, ACS Omega, 2 (2017)
5378–5384.
- Y. Chen, F. Wang, L. Duan, H. Yang, J. Gao, Tetracycline
adsorption onto rice husk ash, an agricultural waste: its kinetic
and thermodynamic studies, J. Mol. Liq., 222 (2016) 487–494.
- E. Bulut, M. Özacar, İ.A. Şengil, Equilibrium and kinetic data
and process design for adsorption of Congo Red onto bentonite,
J. Hazard. Mater., 154 (2008) 613–622.
- K. Mohanty, D. Das, M.N. Biswas, Adsorption of phenol from
aqueous solutions using activated carbons prepared from
Tectona grandis sawdust by ZnCl2 activation, Chem. Eng. J.,
115 (2005) 121–131.
- A. Özer, G. Dursun, Removal of methylene blue from aqueous
solution by dehydrated wheat bran carbon, J. Hazard. Mater.,
146 (2007) 262–269.
- R. Baccar, M. Sarrà, J. Bouzid, M. Feki, P. Blánquez, Removal of
pharmaceutical compounds by activated carbon prepared from
agricultural by-product, Chem. Eng. J., 211 (2012) 310–317.
- X. Guo, F. Chen, Removal of arsenic by bead cellulose loaded
with iron oxyhydroxide from groundwater, Environ. Sci.
Technol., 39 (2005) 6808–6818.
- C. Shan, Z. Ma, M. Tong, Efficient removal of trace antimony
(III) through adsorption by hematite modified magnetic
nanoparticles, J. Hazard. Mater., 268 (2014) 229–236.
- R.S. Summers, D.R.U. Knappe, V.L. Snoeyink, Adsorption of
Organic Compounds by Activated Carbon, In: Water quality
and Treatment: A Handbook on Drinking Water, 6th Edition,
Edited by J. K. Edzwald, McGraw-Hill, 2011.
- C. Lei, Y. Hu, M. He, Adsorption characteristics of triclosan
from aqueous solution onto cetylpyridinium bromide (CPB)
modified zeolites, Chem. Eng. J., 219 (2013) 361–370.
- N.K.E.M. Khori, T. Hadibarata, M.S. Elshikh, A.A. Al-Ghamdi,
Salmiati, Z. Yusop, Triclosan removal by adsorption using
activated carbon derived from waste biomass: isotherms and
kinetic studies, J. Chin. Chem. Soc., 65 (2018) 951–959.
- X. Hu, N. Zhao, J. Wei, Adsorption of triclosan on
carbonnanotubes, Chin. J. Environ. Eng., 8 (2009) 1462–1464.
- Y. Liu, X. Zhu, F. Qian, S. Zhang, J. Chen, Magnetic activated
carbon prepared from rice straw-derived hydrochar for
triclosan removal, RSC Adv., 4 (2014) 63620–63626.
- R. Dou, J. Zhang, Y. Chen, S. Feng, High efficiency removal of
triclosan by structure-directing agent modified mesoporous
MIL-53(Al), Environ. Sci. Pollut. Res., 24 (2017) 8778–8789.
- X. Zhu, Y. Liu, G. Luo, F. Qian, S. Zhang, J. Chen, Facile
fabrication of magnetic carbon composites from hydrochar
via simultaneous activation and magnetization for triclosan
adsorption, Environ. Sci. Technol., 48 (2014) 5840–5848.
- J. Xu, J. Niu, X. Zhang, J. Liu, G. Cao, X. Kong, Sorption of
triclosan on electrospun fibrous membranes: effects of pH and
dissolved organic matter, Emerg. Contam., 1 (2015) 25–32.
- S. Senthilkumaar, P. Kalaamani, K. Porkodi, P.R. Varadarajan,
C.V. Subburaam, Adsorption of dissolved Reactive red dye
from aqueous phase onto activated carbon prepared from
agricultural waste, Bioresour. Technol., 97 (2006) 1618–1625.
- F.M. Machado, C.P. Bergmann, T.H. Fernandes, E.C. Lima,
B. Royer, T. Calvete, S.B. Fagan, Adsorption of reactive Red
M-2BE dye from water solutions by multi-walled carbon
nanotubes and activated carbon, J. Hazard. Mater., 192 (2011)
1122–1131.