References

  1. S.K. Behera, S.-Y. Oh, H.-S. Park, Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: effects of pH, ionic strength, and humic acid, J. Hazard. Mater., 179 (2010) 684–691.
  2. A.B. Dann, A. Hontela, Triclosan: environmental exposure, toxicity and mechanisms of action, J. Appl. Toxicol., 31 (2011) 285–311.
  3. D. Sabaliunas, S.F. Webb, A. Hauk, M. Jacob, W.S. Eckhoff, Environmental fate of triclosan in the river Aire Basin, UK, Water Res., 37 (2003) 3145–3154.
  4. G.-G. Ying, R.S. Kookana, Triclosan in wastewaters and biosolids from Australian wastewater treatment plants, Environ. Int., 33 (2007) 199–205.
  5. J. López-Morales, O. Perales-Pérez, F. Román-Velázquez, Sorption of triclosan onto Tyre Crumb Rubber, Adsorpt. Sci. Technol., 30 (2012) 831–845.
  6. S. Zhou, Y. Shao, N. Gao, J. Deng, C. Tan, Equilibrium, kinetic, and thermodynamic studies on the adsorption of triclosan onto multi-walled carbon nanotubes, Clean Soil Air Water, 41 (2013) 539–547.
  7. Y. Tong, B.K. Mayer, P.J. McNamara, Triclosan adsorption using wastewater biosolids-derived biochar, Environ. Sci. Water Res. Technol., 2 (2016) 761–768.
  8. S.F. Fang, P. Pendleton, A. Badalyan, Effects of surface functional groups of activated carbon on adsorption of triclosan from aqueous solution, Int. J. Environ. Technol. Manage., 10 (2009) 36–45.
  9. X. Hu, Z. Cheng, Z. Sun, H. Zhu, Adsorption of diclofenac and triclosan in aqueous solution by purified multi-walled carbon nanotubes, Pol. J. Environ. Stud., 26 (2017) 87–95.
  10. H.H. Cho, H. Huang, K. Schwab, Effects of solution chemistry on the adsorption of ibuprofen and triclosan onto carbon nanotubes. Langmuir, 27 (2011) 12960–12967.
  11. L. Xin, Y. Sun, J. Feng, J. Wang, D. He, Degradation of triclosan in aqueous solution by dielectric barrier discharge plasma combined with activated carbon fibers, Chemosphere, 144 (2016) 855–863.
  12. I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Enhancement of basic dye adsorption uptake from aqueous solutions using chemically modified oil palm shell activated carbon, Colloids Surf., A, 318 (2008) 88–96.
  13. T.S.Y. Choong, T.N. Wong, T.G. Chuah, A. Idris, Film-poreconcentration- dependent surface diffusion model for the adsorption of dye onto palm kernel shell activated carbon, J. Colloid Interface Sci., 301 (2006) 436–440.
  14. A.R. Hidayu, N. Muda, Preparation and characterization of impregnated activated carbon from palm kernel shell and coconut shell for CO2 capture, Procedia Eng., 148 (2016) 106–113.
  15. A.A. Ismaiel, M.K. Aroua, R. Yusoff, Palm shell activated carbon impregnated with task-specific ionic-liquids as a novel adsorbent for the removal of mercury from contaminated water, Chem. Eng. J., 225 (2013) 306–314.
  16. A. Jumasiah, T.G. Chuah, J. Gimbon, T.S.Y. Choong, I. Azni, Adsorption of basic dye onto palm kernel shell activated carbon: sorption equilibrium and kinetics studies, Desalination, 186 (2005) 57–64.
  17. S.M. Nomanbhay, K. Palanisamy, Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal, Electron. J. Biotechnol., 8 (2005) 43–53.
  18. G. Issabayeva, M.K. Aroua, N.M.N. Sulaiman, Removal of lead from aqueous solutions on palm shell activated carbon, Bioresour. Technol., 97 (2006) 2350–2355.
  19. H.L.H. Chong, P.S. Chia, M.N. Ahmad, The adsorption of heavy metal by Bornean oil palm shell and its potential application as constructed wetland media, Bioresour. Technol., 130 (2013) 181–186.
  20. X.J. Lee, L.Y. Lee, S. Gan, S. Thangalazhy-Gopakumar, H.K. Ng, Biochar potential evaluation of palm oil wastes through slow pyrolysis: thermochemical characterization and pyrolytic kinetic studies, Bioresour. Technol., 236 (2017) 155–163.
  21. J. Bedia, M. Peñas-Garzón, A. Gómez-Avilés, J. Rodriguez, C.A. Belver, Review on the synthesis and characterization of biomass-derived carbons for adsorption of emerging contaminants from water, C J. Carbon Res., 4 (2018) 63.
  22. D.R. Delgado, A.R. Holguin, F. Martinez, Solution thermodynamics of triclosan and triclocarban in some volatile organic solvents, Vitae, 19 (2012) 79–92.
  23. D.G. Lee, Removal of a synthetic broad-spectrum antimicrobial agent, triclosan, in wastewater treatment systems: a short review, Environ. Eng. Res., 20 (2015) 111–120.
  24. A.A. Sharipova, S.B. Aidarova, N.E. Bekturganova, A. Tleuova, M. Schenderlein, O. Lygina, S. Lyubchik, R. Miller, Triclosan as model system for the adsorption on recycled adsorbent materials, Colloids Surf., A, 505 (2016) 193–196.
  25. I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon, J. Hazard. Mater., 164 (2009) 473–482.
  26. H. Thangappan, A. Valiya Parambathu, S. Joseph, Surface characterization and methylene blue adsorption studies on a mesoporous adsorbent from chemically modified Areca triandra palm shell, Desal. Wat. Treat., 57 (2016) 21118–21129.
  27. B.K. Pradhan, N.K. Sandle, Effect of different oxidizing agent treatments on the surface properties of activated carbons, Carbon, 37 (1999) 1323–1332.
  28. O.W. Achaw, A Study of the Porosity of Activated Carbons Using the Scanning Electron Microscope, In V. Kazmiruk, Ed., Scanning Electron Microscopy, IntechOpen, 2012.
  29. H. Kaur, A. Bansiwal, G. Hippargi, G.R. Pophali, Effect of hydrophobicity of pharmaceuticals and personal care products for adsorption on activated carbon: adsorption isotherms, kinetics and mechanism, Environ. Sci. Pollut. Res., 25 (2018) 20473–20485.
  30. G. Newcombe, M. Drikas, R. Hayes, Influence of characterised natural organic material on activated carbon adsorption: II. Effect on pore volume distribution and adsorption of 2-methylisoborneol, Water Res., 31 (1997) 1065–1073.
  31. F. Wang, X. Lu, W. Peng, Y. Deng, T. Zhang, Y. Hu, X.-y. Li, Sorption behavior of bisphenol A and triclosan by graphene: comparison with activated carbon, ACS Omega, 2 (2017) 5378–5384.
  32. Y. Chen, F. Wang, L. Duan, H. Yang, J. Gao, Tetracycline adsorption onto rice husk ash, an agricultural waste: its kinetic and thermodynamic studies, J. Mol. Liq., 222 (2016) 487–494.
  33. E. Bulut, M. Özacar, İ.A. Şengil, Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite, J. Hazard. Mater., 154 (2008) 613–622.
  34. K. Mohanty, D. Das, M.N. Biswas, Adsorption of phenol from aqueous solutions using activated carbons prepared from Tectona grandis sawdust by ZnCl2 activation, Chem. Eng. J., 115 (2005) 121–131.
  35. A. Özer, G. Dursun, Removal of methylene blue from aqueous solution by dehydrated wheat bran carbon, J. Hazard. Mater., 146 (2007) 262–269.
  36. R. Baccar, M. Sarrà, J. Bouzid, M. Feki, P. Blánquez, Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product, Chem. Eng. J., 211 (2012) 310–317.
  37. X. Guo, F. Chen, Removal of arsenic by bead cellulose loaded with iron oxyhydroxide from groundwater, Environ. Sci. Technol., 39 (2005) 6808–6818.
  38. C. Shan, Z. Ma, M. Tong, Efficient removal of trace antimony (III) through adsorption by hematite modified magnetic nanoparticles, J. Hazard. Mater., 268 (2014) 229–236.
  39. R.S. Summers, D.R.U. Knappe, V.L. Snoeyink, Adsorption of Organic Compounds by Activated Carbon, In: Water quality and Treatment: A Handbook on Drinking Water, 6th Edition, Edited by J. K. Edzwald, McGraw-Hill, 2011.
  40. C. Lei, Y. Hu, M. He, Adsorption characteristics of triclosan from aqueous solution onto cetylpyridinium bromide (CPB) modified zeolites, Chem. Eng. J., 219 (2013) 361–370.
  41. N.K.E.M. Khori, T. Hadibarata, M.S. Elshikh, A.A. Al-Ghamdi, Salmiati, Z. Yusop, Triclosan removal by adsorption using activated carbon derived from waste biomass: isotherms and kinetic studies, J. Chin. Chem. Soc., 65 (2018) 951–959.
  42. X. Hu, N. Zhao, J. Wei, Adsorption of triclosan on carbonnanotubes, Chin. J. Environ. Eng., 8 (2009) 1462–1464.
  43. Y. Liu, X. Zhu, F. Qian, S. Zhang, J. Chen, Magnetic activated carbon prepared from rice straw-derived hydrochar for triclosan removal, RSC Adv., 4 (2014) 63620–63626.
  44. R. Dou, J. Zhang, Y. Chen, S. Feng, High efficiency removal of triclosan by structure-directing agent modified mesoporous MIL-53(Al), Environ. Sci. Pollut. Res., 24 (2017) 8778–8789.
  45. X. Zhu, Y. Liu, G. Luo, F. Qian, S. Zhang, J. Chen, Facile fabrication of magnetic carbon composites from hydrochar via simultaneous activation and magnetization for triclosan adsorption, Environ. Sci. Technol., 48 (2014) 5840–5848.
  46. J. Xu, J. Niu, X. Zhang, J. Liu, G. Cao, X. Kong, Sorption of triclosan on electrospun fibrous membranes: effects of pH and dissolved organic matter, Emerg. Contam., 1 (2015) 25–32.
  47. S. Senthilkumaar, P. Kalaamani, K. Porkodi, P.R. Varadarajan, C.V. Subburaam, Adsorption of dissolved Reactive red dye from aqueous phase onto activated carbon prepared from agricultural waste, Bioresour. Technol., 97 (2006) 1618–1625.
  48. F.M. Machado, C.P. Bergmann, T.H. Fernandes, E.C. Lima, B. Royer, T. Calvete, S.B. Fagan, Adsorption of reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon, J. Hazard. Mater., 192 (2011) 1122–1131.