References

  1. S. Vishali, Studies on Treatability of Paint Industry Wastewater by Physical Methods, Dissertation, SRM University, India, 2015.
  2. S. Vishali, P. Rashmi, R. Karthikeyan, Potential of environmentalfriendly, agro-based material Strychnos potatorum, as an adsorbent in the treatment of paint industry effluent, Desal. Wat. Treat., 57 (2016) 18326–18337.
  3. S. Vishali, R. Karthikeyan, S. Prabhakar, Utilization of seafood processing waste, as an adsorbent, in the treatment of paint industry effluent using a fixed-bed column, Desal. Wat. Treat., 66 (2017) 149–157.
  4. B. Noureddine, K. Ouzaouit, M. Abdennouri, E.L. Mohammed, Makhfouk, Dried prickly pear cactus (Opuntia ficus indica) cladodes as a low-cost and eco friendly biosorbent for dyes removal from aqueous solutions, J. Taiwan. Inst. Chem. Eng., 44 (2013) 52–60.
  5. S. Vishali, R. Karthikeyan, Cactus opuntia (ficus-indica): an eco friendly alternative coagulant in the treatment of paint effluent, Desal. Wat. Treat., 56 (2014) 1489–1497.
  6. A. Diaz, N. Rincon, A. Escorihuela, N. Fernandez, E. Chacin, C.F. Forster, A preliminary evaluation of turbidity removal by natural coagulants indigenous to Venezuela, Process Biochem., 35 (1999) 391–395.
  7. M.V. Jadhav, Y.S. Mahajan, Assessment of feasibility of natural coagulants in turbidity removal and modeling of coagulation process, Desal. Wat. Treat., 52 (2014) 5812–5821.
  8. U.S. Carpinteyro, M. Vaca, L. Torres, Can vegetal biopolymers work as coagulant- flocculant aids in the treatment of highload cosmetic industrial wastewaters?, Water Air Soil Pollut., 223 (2012) 4925–4936.
  9. M. Dakiky, A. Khamis, Manassra, Selective adsorption of chromium (VI) in industrial wastewater using low-cost abundantly available adsorbents, Adv. Environ. Sci., 6 (2002) 533–540.
  10. M. Patricia, C. Munoz, A.C. Chavez, Experimental binding of lead to a low cost on biosorbent: Nopal (Opuntia streptacantha), Bioresour. Technol., 99 (2008) 211–1217.
  11. R. Kumar, M.A. Barakat, Decolorization of hazardous brilliant green from aqueous solution using binary oxidized cactus fruit peel, Bioresour. Technol., 226 (2013) 377–383.
  12. APHA, Standard Methods for the Examination of Waste and Wastewater, sixteenth edition, American Public Health Associations, New York, NY, 1995.
  13. S. Gupta, B.V. Babu, Experimental investigations and theoretical modeling aspects in column studies for removal of Cr (VI) from aqueous solutions using activated tamarind seeds, J. Water Res. Prot., 2 (2010) 706–716.
  14. A.A. Ahmad, B.H. Hameed, Fixed bed adsorption of reactive azo dye onto granular activated carbon prepared from waste, J. Hazard. Mater., 175 (2010) 298–303.
  15. D. Monal, J.B. Kumar, M.F. Hassan, G. Nitin, A. Kumar, Fixed bed column of textile dye direct blue 86 by using a composite adsorbent, Arch. Appl. Sci. Res., 4 (2012) 882–891.
  16. J.T. Nwabanne, P.K. Igbokwe, Adsorption of packed bed column for the removal of lead (II) using oil palm fibre, Int. J. Appl. Sci. Eng., 2 (2012) 106–115.
  17. X. Luo, Z. Deng, X. Lin, C. Zhang, Fixed bed column study for Cu2+ removal from solution using expanding rice husk, J. Hazard Mater., 187 (2011) 182–189.
  18. Z.Z. Chowdhury, S.M. Zain, A.K. Rashid, R.F. Rafique, K. Khalid, Breakthrough curve analysis for column dynamics sorption of Mn (II) ions from wastewater by using Mangostana garcinia Peel-based granular activated carbon, J. Chem., (2013) 1–8.
  19. S. Xiao Feng, T. Imai, M. Sekine, H. Takaya, Y. Koichi, K. Ariyo, N.A. Shiori, Adsorption of phosphate using calcined Mg3-Fe layered double hydroxides in a fixed bed column study, J. Ind. Eng. Chem., 20 (2014) 3623–3630.
  20. X. Lin, R. Li, Q. Wen, J. Wu, J. Fan, X. Jin, W. Qian, D. Liu, X. Chen, Y. Chen, J. Xie, J. Bai, H. Ying, Experimental and modeling studies on the sorption breakthrough behaviors of butanol from aqueous solution in affixed bed of KA-I resin, Biotechnol. Bioprocess Eng., 18 (2013) 223–233.
  21. Z. Saadi, R. Saadi, R. Fazaeli, Fixed-bed adsorption dynamics of Pb (II) adsorption from aqueous solution using nanostructured γ-alumina, J. Nanostruct. Chem., 3 (2013) 1–8.
  22. A.O. Okewale, K.A. Babayemi, A.P. Olalekan, Adsorption isotherms and kinetics models of starchy adsorbents on uptake of water from ethanol–water systems, Int. J. Appl. Sci. Technol., 3 (2013) 35–42.
  23. R.N.P. Teixera, V.O.S. Neto, J.T. Oliveira, T.C. Oliveira, D.Q. Melo, M.A,A. Silva, R.F. Nascimento, Study on the use of roasted barley powder for adsorption of Cu2+ ions in batch experiments and in fixed bed columns, Bioresources, 8 (2013) 3556–3573.
  24. M. Kapur, M.K. Mondal, Mass transfer and related phenomena for Cr (VI) adsorption from aqueous solutions onto Mangifera indica saw dust, chemical engineering saw dust, Chem. Eng. J., 218 (2013) 138–146.
  25. I.E. Hristova, Comparison of different kinetic models for adsorption of heavy metals onto activated carbon from apricot stones, Bulg. Chem. Commun., 43 (2011) 370–377.
  26. S.V. Dimitrova, Removal of lead (II) from aqueous solutions by blast-furnace metallurgical slags, Indian J. Eng. Mater. Sci., 5 (1998) 89–193.
  27. V.P. Vinod, T.S. Anirudhan, Adsorption behavior of basic dyes on the humic acid immobilized pillared clay, Water Air Soil Pollut., 150 (2003) 193–217.
  28. E.W. Bao, Y.H. Yong, X. Lei, P. Kang, Biosorption behavior of azo dye by inactive CMC immobilized Aspergillus fumigates beads, Bioresour. Technol., 99 (2008) 794–800.