References

  1. J.P. Chen, Decontamination of Heavy Metals: Processes, Mechanisms, and Applications, CRC Press, Florida, 2012.
  2. A. Bashir, L.A. Malik, S. Ahad, T. Manzoor, M.A. Bhat, G.N. Dar, A.H. Pandith, Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods, Environ. Chem. Lett., 17 (2019) 729–754.
  3. S. Ye, G. Zeng, H. Wu, C. Zhang, J. Dai, J. Liang, J. Yu, X. Ren, H. Yi, M. Cheng, C. Zhang, Biological technologies for the remediation of co-contaminated soil, Crit. Rev. Biotechnol., 37 (2017) 1062–1076.
  4. C. Fersi Bennani, O. M’hiri, Comparative study of the removal of heavy metals by two nanofiltration membranes, Desal. Wat. Treat., 53 (2015) 1024–1030.
  5. Y.-R. Qiu, L.-J. Mao, Removal of heavy metal ions from aqueous solution by ultrafiltration assisted with copolymer of maleic acid and acrylic acid, Desalination, 329 (2013) 78–85.
  6. B. Fetouhi, H. Belarbi, A. Benabdellah, S. Kasmi-Mir, G. Kirsch, Extraction of the heavy metals from the aqueous phase in ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate by N-salicylideneaniline, J. Mater. Environ. Sci., 7 (2016) 746–754.
  7. M.M. Brbooti, B.A. Abid, N.M. Al-Shuwaiki, Removal of heavy metals using chemicals precipitation, English Technol. J., 29 (2011) 595–612.
  8. S.A. Al-Jlil, O.A. Alharbi, Comparative study on the use of reverse osmosis and adsorption process for heavy metals removal from wastewater in Saudi Arabia, Res. J. Environ. Sci., 4 (2010) 400–406.
  9. E. Aytaç, S. Altın, Influence of flow rate on the removal of copper, lead and nickel from solutions in electrodialysis process, MATTER: Int. J. Sci. Technol., 3 (2017) 24–35.
  10. M. Chiban, A. Soudani, F. Sinan, M. Persin, Single, binary and multi-component adsorption of some anions and heavy metals on environmentally friendly Carpobrotus edulis plant, Colloids Surf., B, 82 (2011) 267–276.
  11. A. Ait Ichou, M. Abali, M. Chiban, G. Carja, M. Zerbet, E. Eddaoudi, F. Sinan, Élaboration et caractérisation d’argiles synthétiques de type HDL et leur application pour l’adsorption des ions Cu2+ (Development and characterization of synthetic clay LDH type and their application on the adsorption of Cu2+ ions), J. Mater. Environ. Sci., 5 (2014) 2444–2448.
  12. M.Á. Ulibarri, M. del C. Hermosín, Layered Double Hydroxides in Water Decontamination, V. Rives, Ed., Layered Double Hydroxides: Present and Future, Nova Science Publishers, New York U.S.A., 2006, pp. 285–321.
  13. L. Lei, M. Hu, X. Gao, Y.M. Sun, The effect of the interlayer anions on the electrochemical performance of layered double hydroxide electrode materials, Electrochim. Acta, 54 (2008) 671–676.
  14. M.F. Shao, R.K. Zhang, Z.H. Li, M. Wei, D.G. Evans, X. Duan, Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications, Chem. Commun., 51 (2015) 15880–15893.
  15. L. El Gaini, M. Lakraimi, E. Sebbar, A. Meghea, M. Bakasse, Removal of indigo carmine dye from water to Mg–Al–CO3-calcined layered double hydroxides, J. Hazard. Mater., 161 (2009) 627–632.
  16. Y. Yasin, M. Mohamad, A. Saad, A. Sanusi, F.H. Ahmad, Removal of lead ions from aqueous solutions using intercalated tartrate-Mg–Al layered double hydroxides, Desal. Wat. Treat., 52 (2014) 4266–4272.
  17. M.S. Mostafa, A.-S.A. Bakr, A.M.A. El Naggar, E.-S.A. Sultan, Water decontamination via the removal of Pb (II) using a new generation of highly energetic surface nano-material: Co2+ Mo6+ LDH, J. Colloid Interface Sci., 461 (2016) 261–272.
  18. A.A. Bakr, M.S. Mostafa, G. Eshaq, M.M. Kamel, Kinetics of uptake of Fe(II) from aqueous solutions by Co/Mo layered double hydroxide (Part 2), Desal. Wat. Treat., 56 (2015) 248–255.
  19. T. Kameda, E. Kondo, T. Yoshioka, Treatment of Cr(VI) in aqueous solution by Ni–Al and Co–Al layered double hydroxides: equilibrium and kinetic studies, J. Water Process Eng., 8 (2015) e75–e80.
  20. R. Shan, L. Yan, K. Yang, Y. Hao, B. Du, Adsorption of Cd(II) by Mg–Al–CO3 and magnetic Fe3O4/Mg–Al–CO3-layered double hydroxides: kinetic, isothermal, thermodynamic and mechanistic studies, J. Hazard. Mater., 299 (2015) 42–49.
  21. A.A. Bakr, G. Eshaq, A.M. Rabie, A.H. Mady, A.E. El Metwally, Copper ions removal from aqueous solutions by novel Ca–Al–Zn layered double hydroxides, Desal. Wat. Treat., 57 (2016) 12632–12643.
  22. D.G. Evans, R.C.T. Slade, Structural Aspects of Layered Double Hydroxides, in: Structure and Bonding, Springer-Verlag, Berlin/ Heidelberg, 2006, pp. 1–87.
  23. K.-H. Goh, T.-T. Lim, Z. Dong, Application of layered double hydroxides for removal of oxyanions: a review, Water Res., 42 (2008) 1343–1368.
  24. D. Chaara, I. Pavlovic, F. Bruna, M.A. Ulibarri, K. Draoui, C. Barriga, Removal of nitrophenol pesticides from aqueous solutions by layered double hydroxides and their calcined products, Appl. Clay Sci., 50 (2010) 292–298.
  25. F.L. Theiss, S.J. Couperthwaite, G.A. Ayoko, R.L. Frost, A review of the removal of anions and oxyanions of the halogen elements from aqueous solution by layered double hydroxides, J. Colloid Interface Sci., 417 (2014) 356–368.
  26. Y. Xu, S. Guo, W. Xia, L. Dou, J. Zhou, J. Zhang, J. Liu, G. Qian, Removal competition mechanism of orthophosphate and pyrophosphate by CaFe-Cl-LDHs, Desal. Wat. Treat., 57 (2016) 29393–29403.
  27. X. Liang, W. Hou, J. Xu, Sorption of Pb(II) on Mg-Fe layered double hydroxide, Chin. J. Chem., 27 (2009) 1981–1988.
  28. M.A. González, I. Pavlovic, C. Barriga, Cu(II), Pb(II) and Cd(II) sorption on different layered double hydroxides. A kinetic and thermodynamic study and competing factors, Chem. Eng. J., 269 (2015) 221–228.
  29. L. Ma, Q. Wang, S.M. Islam, Y. Liu, S. Ma, M.G. Kanatzidis, Highly selective and efficient removal of heavy metals by layered double hydroxide intercalated with the MoS42– ion, J. Am. Chem. Soc., 138 (2016) 2858–2866.
  30. N. Ayawei, C.Y. Abasi, D. Wankasi, E.D. Dikio, Layered double hydroxide adsorption of lead: equilibrium, thermodynamic and kinetic studies, Int. J. Adv. Res. Chem. Sci., 2 (2015) 22–32.
  31. X. He, X. Qiu, C. Hu, Y. Liu, Treatment of heavy metal ions in wastewater using layered double hydroxides: a review, J. Dispersion Sci. Technol., 39 (2018) 792–801.
  32. S.-S. Li, M. Jiang, T.-J. Jiang, J.-H. Liu, Z. Guo, X.-J. Huang, Competitive adsorption behavior toward metal ions on nano-Fe/Mg/Ni ternary layered double hydroxide proved by XPS: evidence of selective and sensitive detection of Pb(II), J. Hazard. Mater., 338 (2017) 1–10.
  33. F. Cavani, F. Trifirò, A. Vaccari, Hydrotalcite-type anionic clays: preparation, properties and applications, Catal. Today, 11 (1991) 173–301.
  34. J. He, M. Wei, B. Li, Y. Kang, D.G. Evans, X. Duan, Preparation of Layered Double Hydroxides, in: Layered Double Hydroxides, Springer-Verlag, Berlin/Heidelberg, 2005, pp. 89–119.
  35. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting Physisorption Data for Gas/Solid Systems, in: Handbook of Heterogeneous Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2008, pp. 1217–1230.
  36. R. Escudero, E. Espinoza, F.J. Tavera, Precipitation of lead species in a Pb–H2O system, Res. J. Recent Sci., 2 (2013) 1–4.
  37. Y.-S. Ho, Citation review of Lagergren kinetic rate equation on adsorption reactions, Scientometrics, 59 (2004) 171–177.
  38. Y.-S. Ho, Review of second-order models for adsorption systems, J. Hazard. Mater., 136 (2006) 681–689.
  39. S. Vahidhabanu, D. Karuppasamy, A.I. Adeogun, B.R. Babu, Impregnation of zinc oxide modified clay over alginate beads: a novel material for the effective removal of congo red from wastewater, RSC Adv., 7 (2017) 5669–5678.
  40. J. Wang, G. Liu, T. Li, C. Zhou, Physicochemical studies toward the removal of Zn(II) and Pb(II) ions through adsorption on montmorillonite-supported zero-valent iron nanoparticles, RSC Adv., 5 (2015) 29859–29871.
  41. R.M.M. dos Santos, R.G.L. Gonçalves, V.R.L. Constantino, C.V. Santilli, P.D. Borges, J. Tronto, F.G. Pinto, Adsorption of Acid Yellow 42 dye on calcined layered double hydroxide: effect of time, concentration, pH and temperature, Appl. Clay Sci., 140 (2017) 132–139.
  42. Q. Cui, G. Jiao, J. Zheng, T. Wang, G. Wu, G. Li, Synthesis of a novel magnetic Caragana korshinskii biochar/Mg–Al layered double hydroxide composite and its strong adsorption of phosphate in aqueous solutions, RSC Adv., 9 (2019) 18641–18651.
  43. K. Kadirvelu, J. Goel, C. Rajagopal, Sorption of lead, mercury and cadmium ions in multi-component system using carbon aerogel as adsorbent, J. Hazard. Mater., 153 (2008) 502–507.
  44. R. Aziam, M. Chiban, H. Eddaoudi, A. Soudani, M. Zerbet, F. Sinan, Kinetic modeling, equilibrium isotherm and thermodynamic studies on a batch adsorption of anionic dye onto eco-friendly dried Carpobrotus edulis plant, Eur. Phys. J. Spec. Top., 226 (2017) 977–992.
  45. A. Proctor, J.F. Toro-Vazquez, The Freundlich isotherm in studying adsorption in oil processing, J. Am. Oil Chem. Soc., 73 (1996) 1627–1633.
  46. H.N. Tran, S.J. You, A. Hosseini-Bandegharaei, H.P. Chao, Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review, Water Res., 120 (2017) 88–116.
  47. N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and interpretation of adsorption isotherms, J. Chem., 2017 (2017) 1–11.
  48. J. Poch, I. Villaescusa, Orthogonal distance regression: a good alternative to least squares for modeling sorption data, J. Chem. Eng. Data, 57 (2012) 490–499.
  49. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  50. S. Banerjee, M.C. Chattopadhyaya, Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product, Arabian J. Chem., 10 (2017) S1629–S1638.
  51. A. Naskar, A.K. Guha, M. Mukherjee, L. Ray, Adsorption of nickel onto Bacillus cereus M1 16: a mechanistic approach, Sep. Sci. Technol., 51 (2016) 427–438.
  52. R. Majumder, L. Sheikh, A. Naskar, Vineeta, M. Mukherjee, S. Tripathy, Depletion of Cr(VI) from aqueous solution by heat dried biomass of a newly isolated fungus Arthrinium malaysianum: a mechanistic approach, Sci. Rep., 7 (2017) 1–15.
  53. B. Subramanyam, A. Das, Linearized and non-linearized isotherm models comparative study on adsorption of aqueous phenol solution in soil, Int. J. Environ. Sci. Technol., 6 (2009) 633–640.
  54. P. Srivastava, S.H. Hasan, Biomass of mucorheimalis for the biosorption of cadmium from aqueous solutions: equilibrium and kinetic studies, BioResources, 6 (2011) 3656–3675.
  55. M. Butnariu, P. Negrea, L. Lupa, M. Ciopec, A. Negrea, M. Pentea, I. Sarac, I. Samfira, Remediation of rare earth element pollutants by sorption process using organic natural sorbents, Int. J. Environ. Res. Public Health, 12 (2015) 11278–11287.
  56. A.K. Meena, K. Kadirvelu, G.K. Mishra, C. Rajagopal, P.N. Nagar, Adsorptive removal of heavy metals from aqueous solution by treated sawdust (Acacia arabica), J. Hazard. Mater., 150 (2008) 604–611.
  57. S. Milonjic, A consideration of the correct calculation of thermodynamic parameters of adsorption, J. Serb. Chem. Soc., 72 (2007) 1363–1367.
  58. A. Sarı, M. Tuzen, D. Cıtak, M. Soylak, Adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite from aqueous solution, J. Hazard. Mater., 148 (2007) 387–394.
  59. Y. Shen, X. Zhao, X. Zhang, S. Li, D. Liu, L. Fan, Removal of Cu2+ from the aqueous solution by tartrate-intercalated layered double hydroxide, Desal. Wat. Treat., 57 (2016) 2064–2072.