References
- F.R. Evanko, D.A. Dzombak, Remediation of Metals Contaminated
Soils and Groundwater, Groundwater Remediation
Technologies Analysis Centre, Pittsburg, Pa, USA, Tech. Rep.
TE-97-01, 1997.
- D.W. Blowes, C.J. Ptacek, S.G. Benner, C.W.T. McRae,
T.A. Bennett, R.W. Puls, Treatment of inorganic contaminants
using permeable reactive barriers, J. Contam. Hydrol., 45 (2000)
123–137.
- M.A. Carey, B.A. Fretwell, N.G. Mosley, J.W.N. Smith, Guidance
on the Use of Permeable Reactive Barriers for Remediating
Contaminated Groundwater, National Groundwater and
Contaminated Land Centre, UK Environment Agency, Bristol,
Report NC/01/51, 2002.
- K. Komnitsas, G. Bartzas, K. Fytas, I. Paspaliaris, Longterm
efficiency and kinetic evaluation of ZVI barriers during
clean-up of copper containing solutions, Miner. Eng., 20 (2007)
1200–1209.
- F. Obiri-Nyarko, S.J. Grajales-Mesa, G. Malina, An overview of
permeable reactive barriers for in situ sustainable groundwater
remediation, Chemosphere, 111 (2014) 243–259.
- V.K. Gupta, Equilibrium uptake, sorption dynamics, process
development, and column operations for the removal of
copper and nickel from aqueous solution and wastewater using
activated slag, a low-cost adsorbent, Ind. Eng. Chem. Res.,
37 (1998) 192–202.
- L. Curković, Š. Cerjan-Stefanović, A. Rastovèan-Mioè, Batch
Pb2+ and Cu2+ removal by electric furnace slag, Water Res.,
35 (2000) 3436–3440.
- A.A.H. Faisal, Z.A. Hmood, Groundwater protection from
cadmium contamination by zeolite permeable reactive barrier,
Desal. Wat. Treat., 53 (2015) 1377–1386.
- A.A.H. Faisal, M.D. Ahmed, Remediation of groundwater
contaminated with copper ions by waste foundry sand permeable
barrier, J. Eng., 20 (2014) 62–77.
- A.A.H. Faisal, L.A. Naji, Simulation of ammonia nitrogen
removal from simulated wastewater by sorption onto waste
foundry sand using artificial neural network, Assoc. Arab Univ.
J. Eng. Sci., 26 (2019) 28–34.
- A.H. Sulaymon, A.A.H. Faisal, Q.M. Khaliefa, Cement kiln dust
(CKD)-filter sand permeable reactive barrier for the removal of
Cu(II) and Zn(II) from simulated acidic groundwater, J. Hazard.
Mater., 297 (2015) 160–172.
- A.H. Sulaymon, A.A.H. Faisal, Z.T. Abd Ali, Performance of
granular dead anaerobic sludge as permeable reactive barrier
for containment of lead from contaminated groundwater,
Desal. Wat. Treat., 56 (2015) 327–337.
- A.A.H. Faisal, Z.T. Abd Ali, Groundwater protection from
lead contamination using granular dead anaerobic sludge
biosorbent as permeable reactive barrier, Desal. Wat. Treat.,
57 (2016) 3891–3903.
- A.A.H. Faisal, T.R. Abbas, S.H. Jassam, Removal of zinc from
contaminated groundwater by zero-valent iron permeable
reactive barrier, Desal. Wat. Treat., 55 (2015) 1586–1597.
- H.M. Rashid, A.A.H. Faisal, Removal of dissolved trivalent
chromium ions from contaminated wastewater using locally
available raw scrap iron-aluminum waste, Al-Khwarizmi Eng.
J., 15 (2019) 134–143.
- A.A.H. Faisal, Effect of pH on the performance of olive pips
reactive barrier through the migration of copper-contaminated
groundwater, Desal. Wat. Treat., 57 (2016) 4935–4943.
- V.K. Jha, Y. Kameshima, A. Nakajima, K. Okada, Hazardous
ions uptake behavior of thermally activated steel-making slag,
J. Hazard. Mater., B114 (2004) 139–144.
- J. Bijen, Benefits of slag and fly ash, Constr. Build. Mater.,
10 (1996) 309–314.
- M. Penpolcharoen, Utilization of secondary lead slag as
construction material, Cem. Concr. Res., 35 (2005) 1050–1055.
- W. Cha, J. Kim, H. Choi, Evaluation of steel slag for organic
and inorganic removals in soil aquifer treatment, Water Res.,
40 (2006) 1034–1042.
- S.V. Dimitrova, D.R. Mehandgiev, Lead removal from aqueous
solutions by granulated blast-furnace slag, Water Res., 32 (1998)
3289–3292.
- N. Ortiz, M.A.F. Pires, J.C. Bressiani, Use of steel converter slag
as nickel adsorber to wastewater treatment, Waste Manage.,
21 (2001) 631–635.
- D.-H. Kim, M.-C. Shin, H.-D. Choi, C.-I. Seo, K. Baek, Removal
mechanisms of copper using steel-making slag: adsorption
and precipitation, Desalination, 223 (2008) 283–289.
- N.M. Reza, O. Sasan, Absorption of lead ions by various types
of steel slag iron, J. Chem. Chem. Eng., 27 (2008) 69–75.
- H. Zheng, D. Liu, Y. Zheng, S. Liang, Z. Liu, Sorption isotherm
and kinetic modeling of aniline on Cr-bentonite, J. Hazard.
Mater., 167 (2009) 141–147.
- K. Foo, B. Hameed, Insights into the modeling of adsorption
isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
- H.K. Hansen, F. Arancibia, C. Gutiérrez, Adsorption of copper
onto agriculture waste materials, J. Hazard. Mater., 180 (2010)
442–448.
- P.R. Puranik, J.M. Modak, K.M. Paknikar, A comparative study
of the mass transfer kinetics of metal biosorption by microbial
biomass, Hydrometallurgy, 52 (1999) 189–197.
- Y.S. Ho, G. McKay, Pseudo-second order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- M. Arshadi, M.J. Amiri, S. Mousavi, Kinetic, equilibrium and
thermodynamic investigations of Ni(II), Cd(II), Cu(II) and
Co(II) adsorption on barely straw ash, Water Resour. Ind.,
6 (2014), 1–17.
- L.K. Wang, J.-H. Tay, S.T.L. Tay, Y.-T. Hung, Environmental
Bioengineering, Part of the Handbook of Environmental
Engineering Book Series, Vol. 11, Springer, ISBN 978-1-58829-493-7, 2010.
- J.C. Crittenden, T.F. Speth, D.W. Hand, P.J. Luft, B. Lykins,
Evaluating multicomponent competitive adsorption in fixed
beds, J. Environ. Eng., 113 (1987) 1363–1375.
- S.U. Kurnaz, H. Buyukgungor, Assessment of various biomasses
in the removal of phenol from aqueous solutions, J. Microbiol.
Biochem. Technol., 1 (2009) 47–50.
- A.H. Sulaymon, A.A. Mohammed, T.J. Al-Musawi, Competitive
biosorption of lead, cadmium, copper, and arsenic ions using
algae, Environ. Sci. Pollut. Res., 20 (2013) 3011–3023.
- K.A. Krishnan, T.S. Anirudhan, Removal of mercury(II) from
aqueous solutions and chlor-alkali industry effluent by steam
activated and sulphurised activated carbons prepared from
bagasse pith: kinetics and equilibrium studies, J. Hazard.
Mater., 92 (2002) 161–183.
- R. Qadeer, A.H. Rehan, A study of the adsorption of phenol
by activated carbon from aqueous solutions, Turk. J. Chem.,
26 (2002) 357–362.
- O. Hamdaoui, E. Naffrechoux, Modeling of adsorption
isotherms of phenol and chlorophenols onto granular activated
carbon: part I. Two-parameter models and equations allowing
determination of thermodynamic parameters, J. Hazard. Mater.,
147 (2007) 381–394.
- Y. Bulut, H. Aydın, A kinetics and thermodynamics study
of methylene blue adsorption on wheat shells, Desalination,
194 (2006) 259–267.
- N. Benderdouche, B. Bestani, M. Hamzaoui, The use of linear
and nonlinear methods for adsorption isotherm optimization of
basic green 4-dye onto sawdust-based activated carbon, J. Mar.
Environ. Sci., 9 (2018) 1110–1118.
- M.K. Rai, G. Shahi, V. Meena, R. Meena, S. Chakraborty,
R.S. Singh, B.N. Rai, Removal of hexavalent chromium Cr(VI)
using activated carbon prepared from mango kernel activated
with H3PO4, Resour.-Effic. Technol., 2 (2016) S63–S70.
- Y.S. Ho, G. McKay, The kinetics of sorption of divalent metal
ions onto sphagnum moss peat, Water Res., 34 (2000) 735–742.
- E.M. Kalhori, T.J. Al-Musawi, E. Ghahramani, H. Kazemian,
M. Zarrabi, Enhancement of the adsorption capacity of the
light-weight expanded clay aggregate surface for the metronidazole
antibiotic by coating with MgO nanoparticles:
studies on the kinetic, isotherm, and effects of environmental
parameters, Chemosphere, 175 (2017) 8–20.
- M.N. Sepehr, A. Amrane, K.A. Karimaian, M. Zarrabi,
H.R. Ghaffari, Potential of waste pumice and surface modified
pumice for hexavalent chromium removal: characterization,
equilibrium, thermodynamic and kinetic study, J. Taiwan Inst.
Chem. Eng., 45 (2014) 635–647.
- X. Chen, W.H. Hou, G.L. Song, Q.H. Wang, Adsorption of
Cu, Cd, Zn and Pb ions from aqueous solutions by electric
arc furnace slag and the effects of pH and grain size, Chem.
Biochem. Eng. Q., 25 (2011) 105–114.
- M.H. Kalavathy, T. Karthikeyan, S. Rajgopal, L.R. Miranda,
Kinetic and isotherm studies of Cu(II) adsorption onto H3PO4-activated rubber wood sawdust, J. Colloid Interface Sci.,
292 (2005) 354–362.
- I. Tan, A. Ahmad, B. Hameed, Adsorption isotherms,
kinetics, thermodynamics and desorption studies of 2, 4,
6-trichlorophenol on oil palm empty fruit bunch-based
activated carbon, J. Hazard. Mater., 164 (2009) 473–482.
- M. Naushad, Z.A. ALOthman, R. Awual, M.M. Alam,
G.E. Eldesoky, Adsorption kinetics, isotherms, and thermodynamic
studies for the adsorption of Pb2+ and Hg2+ metal
ions from aqueous medium using Ti(IV) iodovanadate cation
exchanger, Ionics, 21 (2015) 2237–2245.
- D. Singh, N.S. Rawat, Sorption of Pb(II) by bituminous coal,
Ind. J. Chem. Technol., 4 (1995) 49–50.
- G. Bereket, A.Z. Aroguz, M.Z. Ozel, Removal of Pb(II), Cd(II),
Cu(II) and Zn(II) from aqueous solutions by adsorption of
bentonite, J. Colloid Interface Sci., 183 (1997) 338–343.
- Y.H. Li, Z. Di, J. Ding, D. Wu, Z. Luan, Y. Zhu, Adsorption
thermodynamic, kinetic and desorption studies of Pb2+ on
carbon nanotubes, Water Res., 39 (2005) 605–609.
- J. Goel, K. Kadirvelu, C. Rajagopal, V.K. Garg, Removal of
lead(II) from aqueous solution by adsorption on carbon aerogel
using a response surface methodological approach, Ind. Eng.
Chem. Res., 44 (2005) 1987–1994.
- P. Shekinath, K. Kadirvelu, P. Kanmani, P. Senthilkumar,
V. Subburam, Adsorption of lead(II) from aqueous solution by
activated carbon prepared from Eichhornia, J. Chem. Technol.
Biotechnol., 77 (2002) 1–7.