References

  1. F.R. Evanko, D.A. Dzombak, Remediation of Metals Contaminated Soils and Groundwater, Groundwater Remediation Technologies Analysis Centre, Pittsburg, Pa, USA, Tech. Rep. TE-97-01, 1997.
  2. D.W. Blowes, C.J. Ptacek, S.G. Benner, C.W.T. McRae, T.A. Bennett, R.W. Puls, Treatment of inorganic contaminants using permeable reactive barriers, J. Contam. Hydrol., 45 (2000) 123–137.
  3. M.A. Carey, B.A. Fretwell, N.G. Mosley, J.W.N. Smith, Guidance on the Use of Permeable Reactive Barriers for Remediating Contaminated Groundwater, National Groundwater and Contaminated Land Centre, UK Environment Agency, Bristol, Report NC/01/51, 2002.
  4. K. Komnitsas, G. Bartzas, K. Fytas, I. Paspaliaris, Longterm efficiency and kinetic evaluation of ZVI barriers during clean-up of copper containing solutions, Miner. Eng., 20 (2007) 1200–1209.
  5. F. Obiri-Nyarko, S.J. Grajales-Mesa, G. Malina, An overview of permeable reactive barriers for in situ sustainable groundwater remediation, Chemosphere, 111 (2014) 243–259.
  6. V.K. Gupta, Equilibrium uptake, sorption dynamics, process development, and column operations for the removal of copper and nickel from aqueous solution and wastewater using activated slag, a low-cost adsorbent, Ind. Eng. Chem. Res., 37 (1998) 192–202.
  7. L. Curković, Š. Cerjan-Stefanović, A. Rastovèan-Mioè, Batch Pb2+ and Cu2+ removal by electric furnace slag, Water Res., 35 (2000) 3436–3440.
  8. A.A.H. Faisal, Z.A. Hmood, Groundwater protection from cadmium contamination by zeolite permeable reactive barrier, Desal. Wat. Treat., 53 (2015) 1377–1386.
  9. A.A.H. Faisal, M.D. Ahmed, Remediation of groundwater contaminated with copper ions by waste foundry sand permeable barrier, J. Eng., 20 (2014) 62–77.
  10. A.A.H. Faisal, L.A. Naji, Simulation of ammonia nitrogen removal from simulated wastewater by sorption onto waste foundry sand using artificial neural network, Assoc. Arab Univ. J. Eng. Sci., 26 (2019) 28–34.
  11. A.H. Sulaymon, A.A.H. Faisal, Q.M. Khaliefa, Cement kiln dust (CKD)-filter sand permeable reactive barrier for the removal of Cu(II) and Zn(II) from simulated acidic groundwater, J. Hazard. Mater., 297 (2015) 160–172.
  12. A.H. Sulaymon, A.A.H. Faisal, Z.T. Abd Ali, Performance of granular dead anaerobic sludge as permeable reactive barrier for containment of lead from contaminated groundwater, Desal. Wat. Treat., 56 (2015) 327–337.
  13. A.A.H. Faisal, Z.T. Abd Ali, Groundwater protection from lead contamination using granular dead anaerobic sludge biosorbent as permeable reactive barrier, Desal. Wat. Treat., 57 (2016) 3891–3903.
  14. A.A.H. Faisal, T.R. Abbas, S.H. Jassam, Removal of zinc from contaminated groundwater by zero-valent iron permeable reactive barrier, Desal. Wat. Treat., 55 (2015) 1586–1597.
  15. H.M. Rashid, A.A.H. Faisal, Removal of dissolved trivalent chromium ions from contaminated wastewater using locally available raw scrap iron-aluminum waste, Al-Khwarizmi Eng. J., 15 (2019) 134–143.
  16. A.A.H. Faisal, Effect of pH on the performance of olive pips reactive barrier through the migration of copper-contaminated groundwater, Desal. Wat. Treat., 57 (2016) 4935–4943.
  17. V.K. Jha, Y. Kameshima, A. Nakajima, K. Okada, Hazardous ions uptake behavior of thermally activated steel-making slag, J. Hazard. Mater., B114 (2004) 139–144.
  18. J. Bijen, Benefits of slag and fly ash, Constr. Build. Mater., 10 (1996) 309–314.
  19. M. Penpolcharoen, Utilization of secondary lead slag as construction material, Cem. Concr. Res., 35 (2005) 1050–1055.
  20. W. Cha, J. Kim, H. Choi, Evaluation of steel slag for organic and inorganic removals in soil aquifer treatment, Water Res., 40 (2006) 1034–1042.
  21. S.V. Dimitrova, D.R. Mehandgiev, Lead removal from aqueous solutions by granulated blast-furnace slag, Water Res., 32 (1998) 3289–3292.
  22. N. Ortiz, M.A.F. Pires, J.C. Bressiani, Use of steel converter slag as nickel adsorber to wastewater treatment, Waste Manage., 21 (2001) 631–635.
  23. D.-H. Kim, M.-C. Shin, H.-D. Choi, C.-I. Seo, K. Baek, Removal mechanisms of copper using steel-making slag: adsorption and precipitation, Desalination, 223 (2008) 283–289.
  24. N.M. Reza, O. Sasan, Absorption of lead ions by various types of steel slag iron, J. Chem. Chem. Eng., 27 (2008) 69–75.
  25. H. Zheng, D. Liu, Y. Zheng, S. Liang, Z. Liu, Sorption isotherm and kinetic modeling of aniline on Cr-bentonite, J. Hazard. Mater., 167 (2009) 141–147.
  26. K. Foo, B. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  27. H.K. Hansen, F. Arancibia, C. Gutiérrez, Adsorption of copper onto agriculture waste materials, J. Hazard. Mater., 180 (2010) 442–448.
  28. P.R. Puranik, J.M. Modak, K.M. Paknikar, A comparative study of the mass transfer kinetics of metal biosorption by microbial biomass, Hydrometallurgy, 52 (1999) 189–197.
  29. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  30. M. Arshadi, M.J. Amiri, S. Mousavi, Kinetic, equilibrium and thermodynamic investigations of Ni(II), Cd(II), Cu(II) and Co(II) adsorption on barely straw ash, Water Resour. Ind., 6 (2014), 1–17.
  31. L.K. Wang, J.-H. Tay, S.T.L. Tay, Y.-T. Hung, Environmental Bioengineering, Part of the Handbook of Environmental Engineering Book Series, Vol. 11, Springer, ISBN 978-1-58829-493-7, 2010.
  32. J.C. Crittenden, T.F. Speth, D.W. Hand, P.J. Luft, B. Lykins, Evaluating multicomponent competitive adsorption in fixed beds, J. Environ. Eng., 113 (1987) 1363–1375.
  33. S.U. Kurnaz, H. Buyukgungor, Assessment of various biomasses in the removal of phenol from aqueous solutions, J. Microbiol. Biochem. Technol., 1 (2009) 47–50.
  34. A.H. Sulaymon, A.A. Mohammed, T.J. Al-Musawi, Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae, Environ. Sci. Pollut. Res., 20 (2013) 3011–3023.
  35. K.A. Krishnan, T.S. Anirudhan, Removal of mercury(II) from aqueous solutions and chlor-alkali industry effluent by steam activated and sulphurised activated carbons prepared from bagasse pith: kinetics and equilibrium studies, J. Hazard. Mater., 92 (2002) 161–183.
  36. R. Qadeer, A.H. Rehan, A study of the adsorption of phenol by activated carbon from aqueous solutions, Turk. J. Chem., 26 (2002) 357–362.
  37. O. Hamdaoui, E. Naffrechoux, Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon: part I. Two-parameter models and equations allowing determination of thermodynamic parameters, J. Hazard. Mater., 147 (2007) 381–394.
  38. Y. Bulut, H. Aydın, A kinetics and thermodynamics study of methylene blue adsorption on wheat shells, Desalination, 194 (2006) 259–267.
  39. N. Benderdouche, B. Bestani, M. Hamzaoui, The use of linear and nonlinear methods for adsorption isotherm optimization of basic green 4-dye onto sawdust-based activated carbon, J. Mar. Environ. Sci., 9 (2018) 1110–1118.
  40. M.K. Rai, G. Shahi, V. Meena, R. Meena, S. Chakraborty, R.S. Singh, B.N. Rai, Removal of hexavalent chromium Cr(VI) using activated carbon prepared from mango kernel activated with H3PO4, Resour.-Effic. Technol., 2 (2016) S63–S70.
  41. Y.S. Ho, G. McKay, The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Water Res., 34 (2000) 735–742.
  42. E.M. Kalhori, T.J. Al-Musawi, E. Ghahramani, H. Kazemian, M. Zarrabi, Enhancement of the adsorption capacity of the light-weight expanded clay aggregate surface for the metronidazole antibiotic by coating with MgO nanoparticles: studies on the kinetic, isotherm, and effects of environmental parameters, Chemosphere, 175 (2017) 8–20.
  43. M.N. Sepehr, A. Amrane, K.A. Karimaian, M. Zarrabi, H.R. Ghaffari, Potential of waste pumice and surface modified pumice for hexavalent chromium removal: characterization, equilibrium, thermodynamic and kinetic study, J. Taiwan Inst. Chem. Eng., 45 (2014) 635–647.
  44. X. Chen, W.H. Hou, G.L. Song, Q.H. Wang, Adsorption of Cu, Cd, Zn and Pb ions from aqueous solutions by electric arc furnace slag and the effects of pH and grain size, Chem. Biochem. Eng. Q., 25 (2011) 105–114.
  45. M.H. Kalavathy, T. Karthikeyan, S. Rajgopal, L.R. Miranda, Kinetic and isotherm studies of Cu(II) adsorption onto H3PO4-activated rubber wood sawdust, J. Colloid Interface Sci., 292 (2005) 354–362.
  46. I. Tan, A. Ahmad, B. Hameed, Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2, 4, 6-trichlorophenol on oil palm empty fruit bunch-based activated carbon, J. Hazard. Mater., 164 (2009) 473–482.
  47. M. Naushad, Z.A. ALOthman, R. Awual, M.M. Alam, G.E. Eldesoky, Adsorption kinetics, isotherms, and thermodynamic studies for the adsorption of Pb2+ and Hg2+ metal ions from aqueous medium using Ti(IV) iodovanadate cation exchanger, Ionics, 21 (2015) 2237–2245.
  48. D. Singh, N.S. Rawat, Sorption of Pb(II) by bituminous coal, Ind. J. Chem. Technol., 4 (1995) 49–50.
  49. G. Bereket, A.Z. Aroguz, M.Z. Ozel, Removal of Pb(II), Cd(II), Cu(II) and Zn(II) from aqueous solutions by adsorption of bentonite, J. Colloid Interface Sci., 183 (1997) 338–343.
  50. Y.H. Li, Z. Di, J. Ding, D. Wu, Z. Luan, Y. Zhu, Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes, Water Res., 39 (2005) 605–609.
  51. J. Goel, K. Kadirvelu, C. Rajagopal, V.K. Garg, Removal of lead(II) from aqueous solution by adsorption on carbon aerogel using a response surface methodological approach, Ind. Eng. Chem. Res., 44 (2005) 1987–1994.
  52. P. Shekinath, K. Kadirvelu, P. Kanmani, P. Senthilkumar, V. Subburam, Adsorption of lead(II) from aqueous solution by activated carbon prepared from Eichhornia, J. Chem. Technol. Biotechnol., 77 (2002) 1–7.