References

  1. P. Ravenscroft, H. Brammer, K. Richards, Arsenic Pollution: A Global Synthesis RGS IBG Book Series, A John Wiley & Sons Publication Ltd., London, 2009.
  2. C.M. Steinmaus, C. Ferreccio, J.A. Romo, Y. Yuan, S. Cortes, G. Marshall, L.E. Moore, J.R. Balmes, J. Liaw, T. Golden, A.H. Smith, Drinking water arsenic in Northern Chile: high cancer risks 40 years after exposure cessation, Cancer Epidemiol. Biomarkers Prev., 22 (2013) 623–630.
  3. S.-W. Wang, Y.-M. Kuo, Y.-H. Kao, C.-S. Jang, S.K. Maji, F.-J. Chang, C.-W. Liu, Influence of hydrological and hydrogeochemical parameters on arsenic variation in shallow groundwater of southwestern Taiwan, J. Hydrol., 408 (2011) 286–295.
  4. O. Gunduz, A. Baba, H. Elpit, Arsenic in Groundwater in Western Anatolia, Turkey, A review: Groundwater Quality Sustainability, CRC Press, Boca Raton 2012, pp. 141–149.
  5. P. Mondal, S. Bhowmick, D. Chatterjee, A. Figoli, B.V. der Bruggen, Remediation of inorganic arsenic in groundwater for safe water supply: a critical assessment of technological solutions, Chemosphere, 92 (2013) 157–170.
  6. M.M. Rahman, J.C. Ng, R. Naidu, Chronic exposure of arsenic via drinking water and its adverse health impacts on humans, Environ. Geochem. Health, 31 (2009) 189–200.
  7. World Health Organization, Guidelines for Drinking Water Quality, 3rd ed., Vol. 1, WHO Press, Switzerland-Geneva, 2004.
  8. US-EPA (United States Environmental Protection Agency), Implementation Guidance for the Arsenic Rule, Environmental Protection Agency, Government Printing Office, Washington, 2002.
  9. US-EPA (United States Environmental Protection Agency), Technologies and Costs for Removal of Arsenic from Drinking Water, Government Printing Office, Washington, D.C., 2000.
  10. M.R. Awual, Assessing of lead(III) capturing from contaminated wastewater using ligand doped conjugate adsorbent, Chem. Eng. J., 289 (2016) 65–73.
  11. M.R. Awual, M. Khraisheh, N.H. Alharthi, M. Luqman, A. Islam, M.R. Karim, M.M. Rahman, A. Khaleque, Efficient detection and adsorption of cadmium(II) ions using innovative nano-composite materials, Chem. Eng. J., 343 (2018) 118–127.
  12. M.R. Awual, Y. Miyazaki, T. Taguchi, H. Shiwaku, T. Yaita, Encapsulation of cesium from contaminated water with highly selective facial organic–inorganic mesoporous hybrid adsorbent, Chem. Eng. J., 291 (2016) 128–137.
  13. A. Shahat, M.R. Awual, M.A. Khaleque, M.Z. Alam, M. Naushad, A.M.S. Chowdhury, Large-pore diameter nano-adsorbent and its application for rapid lead(II) detection and removal from aqueous media, Chem. Eng. J., 273 (2015) 286–295.
  14. M.R. Awual, New type mesoporous conjugate material for selective optical copper(II) ions monitoring and removal from polluted waters, Chem. Eng. J., 307 (2017) 85–94.
  15. M.R. Awual, Novel nanocomposite materials for efficient and selective mercury ions capturing from wastewater, Chem. Eng. J., 307 (2017) 456–465.
  16. M.R. Awual, A novel facial composite adsorbent for enhanced copper(II) detection and removal from wastewater, Chem. Eng. J., 266 (2015) 368–375.
  17. M.R. Awual, Solid phase sensitive palladium(II) ions detection and recovery using ligand based efficient conjugate nanomaterials, Chem. Eng. J., 300 (2016) 264–272.
  18. M.R. Awual, I.M.M. Rahman, T. Yaita, M.A. Khaleque, M. Ferdows, pH dependent Cu(II) and Pd(II) ions detection and removal from aqueous media by an efficient mesoporous adsorbent, Chem. Eng. J., 236 (2014) 100–109.
  19. E. Şık, E. Demirbaş, A.Y. Goren, M.S. Oncel, M. Kobya, Arsenite and arsenate removals from groundwater by electrocoagulation using iron ball anodes: Influence of operating parameters, J. Water Process Eng., 18 (2017) 83–91.
  20. S. Amrose, S.R.S. Bandaru, C. Delaire, C.M. Genuchten, A. Dutta, A. DebSarkar, C. Orr, J. Roy, A. Das, A.J. Gadgil, Electro-chemical arsenic remediation: field trials in West Bengal, Sci. Total Environ., 488–489 (2014) 539–546.
  21. M. Kobya, F. Ozyonar, E. Demirbas, E. Şık, M.S. Oncel, Arsenic removal from groundwater of Sivas-Şarkişla Plain, Turkey by electrocoagulation process: comparing with iron plate and ball electrodes, J. Environ. Chem. Eng., 3 (2015) 1096–1106.
  22. R. Alcacio, J.L. Nava, G. Carreno, E. Elorza, F. Martinez, Removal of arsenic from deep well by electrocoagulation in a continuous filter press reactor, Water Sci. Technol. Water Supply, 14 (2014) 189–195.
  23. J.K. Yang, Y.J. Park, K.H. Kim, H.Y. Lee, K.C. Min, S.M. Lee, Effect of co-existing copper and calcium on the removal of As(V) by reused aluminum oxides, Water Sci. Technol., 67 (2013) 187–192.
  24. D. Laky, I. Liscko, Arsenic removal by ferric-chloride coagulation-effect of phosphate, bicarbonate and silicate, Water Sci. Technol., 64 (2011) 1046–1055.
  25. M.R. Awual, M.A. Hossain, M.A. Shenashen, T. Yaita, S. Suzuki, A. Jyo, Evaluating of arsenic(V) removal from water by weakbase anion exchange adsorbents, Environ. Sci. Pollut. Res., 20 (2013) 421–430.
  26. M.R. Awual, A. Jyo, Rapid column-mode removal of arsenate from water by crosslinked poly(allylamine) resin, Water Res., 43 (2009) 1229–1236.
  27. M.R. Awual, S.A. El-Safty, A. Jyo, Removal of trace arsenic(V) and phosphate from water by a highly selective ligand exchange adsorbent, J. Environ. Sci., 23 (2011) 1947–1954.
  28. M.R. Awual, M.A. Shenashen, T. Yaita, H. Shiwaku, A. Jyo, Efficient arsenic(V) removal from water by ligand exchange fibrous adsorbent, Water Res., 46 (2012) 5541–5550.
  29. M. Kobya, E. Demirbas, O.T. Can, M. Bayramoglu, Treatment of levafix orange textile dye solution by electrocoagulation, J. Hazard. Mater., 132 (2006) 183–188.
  30. A.Y. Gören, M.S. Öncel, E. Demirbas, E. Şık, M. Kobya, Removal of arsenate by EC reactor using Al ball anode electrodes, Water Pract. Technol., 13 (2018) 753–763.
  31. E. Şık, M. Kobya, E. Demirbaş, M.S. Oncel, A.Y. Goren, Removal of As(V) from groundwater by a new electrocoagulation reactor using Fe ball anodes: optimization of operating parameters, Desal. Wat. Treat., 56 (2015) 1177–1190.
  32. M.Y.A. Mollah, R. Schennach, J.P. Parga, D.L. Cocke, Electrocoagulation (EC)-science and applications, J. Hazard. Mater., 84 (2001) 29–41.
  33. M. Rebhun, M. Lurie, Control of organic matter by coagulation and floc separation, Water Sci. Technol., 27 (1993) 1–20.
  34. X. Chen, G. Chen, P.L. Yue, Separation of pollutants from restaurant wastewater by electrocoagulation, Sep. Purif. Technol., 19 (2000) 65–76.
  35. S.S. Tripathy, A.M. Raichur, Enhanced adsorption capacity of activated alumina by impregnation with alum for removal of As(V) from water, Chem. Eng. J., 138 (2008) 179–186.
  36. T.S. Singh, K.K. Pant, A Comparative Study for the Removal of As(III) and As(V) by Activated Alumina, Natural Arsenic in Groundwater: Occurrences, Remediation and Management, Taylor and Francis Series, Balkema Publications, The Netherlands, 2004.
  37. P.K. Roy, A. Majumder, G. Banerjee, M.B. Roy, S. Pal, A. Mazumdar, Removal of arsenic from drinking water using dual treatment process, Clean Technol. Environ. Policy, 17 (2015) 1065–1076.
  38. APHA (American Public Health Association), Standard Methods for the Examination of Water and Wastewater, 19th ed., American Public Health Association, Washington, D.C., 1998.
  39. R.H. Myers, D.C. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley and Sons, New York, 2002.
  40. M. Kanematsu, T.M. Young, K. Fukushi, P.G. Green, J.L. Darby, Arsenic (III, V) adsorption on a goethite-based adsorbent in the presence of major co-existing ions: modeling competitive adsorption consistent with spectroscopic and molecular evidence, Geochim. Cosmochim. Acta, 106 (2013) 404–428.
  41. V. Pallier, G.F. Cathalifaud, B. Serpaud, Influence of organic matter on arsenic removal by continuous flow electrocoagulation treatment of weakly mineralized waters, Chemosphere, 8 (2011) 21–28.
  42. D.H. Moed, D. van Halem, J.Q.J.C. Verberk, G.L. Amy, J.C. van Dijk, Influence of groundwater composition on subsurface iron and arsenic removal, Water Sci. Technol., 66 (2012) 173–178.
  43. H.J. You, I.S. Han, Effects of dissolved ions and natural organic matter on electrocoagulation of As(III) in groundwater, J. Environ. Chem. Eng., 4 (2016) 1008–1016.
  44. A. Shafaei, M. Rezayee, M. Arami, M. Nikazar, Removal of Mn2+ ions from synthetic wastewater by electrocoagulation process, Desalination, 260 (2010) 23–28.
  45. K. Tomohito, S. Youhei, Y. Toshiaki, Removal of arsenic from an aqueous solution by co-precipitation with manganese oxide, J. Environ. Chem. Eng., 2 (2014) 2045–2049.
  46. J. Hou, J. Luo, S. Song, Y. Li, Q. Lid, The remarkable effect of the coexisting arsenite and arsenate species ratios on arsenic removal by manganese oxide, Chem. Eng. J., 315 (2017) 159–166.
  47. M.M. Benjamin, Water Chemistry, McGraw-Hill Series in Water Resources and Environmental Engineering, New York, 2002, pp. 362–464.
  48. R. De, T.S.C.M. Wetering, D. Dijk, D. Halem, Influence of HPO42–, H4SiO4, Ca2+, Mg2+ on Fe floc growth and As(III) removal in aerated, natural groundwater, J. Water Process Eng., 25 (2018) 149–156.
  49. C.Y. Hu, S.L. Lo, W.H. Kuan, High concentration of arsenate removal by electrocoagulation with calcium, Sep. Purif. Technol., 126 (2014) 7–14.
  50. J.F.A. Silva, N.S. Graça, A.M. Ribeiro, A.E. Rodrigues, Electrocoagulation process for the removal of co-existent fluoride, arsenic and iron from contaminated drinking water, Sep. Purif. Technol., 197 (2018) 237–243.
  51. Y. Kong, J. Kang, J. Shen, Z. Chen, L. Fan, Influence of humic acid on the removal of arsenate and arsenic by ferric chloride: effects of pH, As/Fe ratio, initial As concentration, and co-existing solutes, Environ. Sci. Pollut. Res. Int., 24 (2017) 2381–2393.
  52. J. Qiao, Z. Jiang, B. Sun, Y. Sun, Q. Wang, X. Guan, Arsenate and arsenite removal by FeCl3: effects of pH, As/Fe ratio, initial As concentration and co-existing solutes, Sep. Purif. Technol., 92 (2012) 106–114.
  53. X. Guan, J. Ma, H. Dong, L. Jiang, Removal of arsenic from water: effect of calcium ions on As(III) removal in the KMnO4–Fe(II) process, Water Res., 43 (2009) 5119–5128.
  54. J.C. Hsu, C.J. Lin, C.H. Liao, S.T. Chen, Evaluation of the multiple-ion competition in the adsorption of As(V) onto reclaimed iron-oxide coated sands by fractional factorial design, Chemosphere, 72 (2008) 1049–1055.
  55. V. Tanboonchuy, N. Grisdanurak, C.H. Liao, Background species effect on aqueous arsenic removal by nano zero-valent iron using fractional factorial design, J. Hazard. Mater., 205–206 (2012) 40–46.
  56. M.S.H. Mak, P. Rao, I.M.C. Lo, Effects of hardness and alkalinity on the removal of arsenic (V) from humic acid-deficient and humic acid-rich groundwater by zero-valent iron, Water Res., 43 (2009) 4296–4304.
  57. L. Wang, D.E. Giammar, Effects of pH, dissolved oxygen, and aqueous ferrous iron on the adsorption of arsenic to lepidocrocite, J. Colloid Interface Sci., 448 (2015) 331–338.
  58. D.J. Ridder, T.S.C.M. Wetering, T. Dijk, D. Halem, Influence of HPO42–, H4SiO4, Ca2+, Mg2+ on Fe floc growth and As(III) removal in aerated, natural groundwater, J. Water Process Eng., 25 (2018) 149–156.
  59. P. Mondal, A.T.K. Tran, B. van der Bruggen, Removal of As(V) from simulated groundwater using forward osmosis: effect of competing and coexisting solutes, Desalination, 348 (2014) 33–38.