References
- T.K.G. Mohr, Environmental Investigation and Remediation:
1,4-Dioxane and Other Solvent Stabilizers, CRC Press, Boca
Raton, 2010.
- M. Mahmoud, S. Ismail, A. Tawfik, Post-treatment of anaerobic
effluent containing 1,4-dioxane and heavy metals via autoaerated
down-flow hanging luffa (ADHL) system, Process Saf.
Environ. Prot., 17 (2018) 22–32.
- S. Yamazaki, N. Yamabe, S. Nagano, A. Fukuda, Adsorption
and photocatalytic degradation of 1,4-dioxane on TiO2,
J. Photochem. Photobiol., A, 185 (2007) 150–155.
- R.E. Jackson, V. Dwarakanath, Chlorinated degreasing solvents:
physicalchemical properties affecting aquifer contamination
and remediation, Groundwater Monit. Rem., 19 (1999)
102–110.
- M.W. Priddle, R.E. Jackson, Laboratory column measurement
of VOC retardation factors and comparison with field values,
Groundwater, 29 (1991) 260–266.
- Environmental Protection Agency, U.S. (US-EPA), Toxicological
review of 1,4-dioxane (CAS No. 123–91–1), EPA/635/R-09/005-F,
USEPA, Washington, DC, 2010.
- Environmental Protection Agency, U.S. (US-EPA), Treatment
Technologies for 1,4- Dioxane: Fundamentals and Field
Applications, EPA-542-R-06–009, USEPA, Office of Solid Waste
and Emergency Response, Washington, D.C., 2006.
- M. Mahmoud, A. Elreedy, P. Pascal, Le R. Sophie, A. Tawfik,
Hythane (H2 and CH4) production from unsaturated polyester
resin wastewater contaminated by 1,4-dioxane and heavy
metals via up-flow anaerobic self-separation gases reactor,
Energy Convers. Manage., 152 (2017) 342–353.
- T.K.G. Mohr, Solvent stabilizers white paper. [Online.] Santa
Clara Valley Water District, San Jose, California, 2001. Available
at: http://www.valleywater.org/Water/Water_Quality/Protec
ting_your_water/_Solvents/_PD Fs/SolventStabilizers.pdf.
- R.H. Bowman, P. Miller, M. Purchase, R. Schoellerman, Ozoneperoxide
Advanced Oxidation Water Treatment System for
Treatment of Chlorinated Solvents and 1,4- dioxane, Proceedings
of the American Chemical Society National Meeting, San Diego,
April 3, 2001.
- C.D. Adams, P.A. Scanlan, N.D. Secrist, Oxidation and
biodegradability enhancement of 1,4-dioxane using hydrogen
peroxide and ozone, Environ. Sci. Technol., 28 (1994) 1812–1818.
- M.M. Odah, R. Powell, D.J. Riddle, ART in-well technology
proves effective in treating 1,4-dioxane contamination, Rem. J.,
15 (2005) 51–64.
- M.I. Stefan, J.R. Bolton, Mechanism of the degradation of
1,4-dioxane in dilute aqueous solutions using the UV/hydrogen
peroxide process, Environ. Sci. Technol., 32 (1998) 1588–1595.
- B.K. Min, J.E. Heo, N.K. Youn, O.S. Joo, H. Lee, J.H. Kim, H.S.
Kim, Tuning of the photocatalytic 1,4-dioxane degradation with
surface plasmon resonance of gold nanoparticles on titania, Cat.
Comm., 10 (2009) 712–715.
- T. Vescovi, H. Coleman, R. Amal, The effect of pH on UV-based
advanced oxidation technologies - 1,4-dioxane degradation,
J. Hazard. Mater., 182 (2010) 75–79.
- W.J. Weber, E.J. Le Boeuf, Process for advanced treatment of
water, Water Sci. Technol., 40 (1999) 11–19.
- P. Bose, W.H. Glaze, D.S. Maddox, Degradation of various
advanced oxidation processes: 1. Reaction rates, Water Res.,
32 (1998) 997–1004.
- A. Hirvonen, T. Tuhkanen, M. Ettala, S. Korhonen, P. Kalliokoski,
Evaluation of a field-scale UV/H2O2 oxidation system
for the purification of groundwater contaminated with PCE,
Environ. Technol., 19 (1998) 821–828.
- S.M. Sock, A Comprehensive Evaluation of Biodegradation as
a Treatment Alternative for the Removal of 1,4-Dioxane, MSc
thesis, Clemson University, Clemson SC, 1993.
- M.J. Zenker, R.C. Borden, M.A. Barlas, Biodegradation of
1,4- dioxane using trickling filter, J. Environ. Eng., 130 (2003)
926–931.
- R.E. Parales, J.E. Adamus, N. White, H.D. May, Degradation of
1,4-dioxane by an actinomycete in pure culture, Appl. Environ.
Microbiol., 60 (1994) 4527–4230.
- B.L. Burback, J.J. Perry, Biodegradation and biotransformation
of groundwater pollutant mixtures by Mycobacterium vaccae,
Appl. Environ. Microbiol., 59 (1993) 1025–1029.
- D. Bernhardt, H. Diekmann, Degradation of dioxane,
tetrahydrofuran and other cyclic ethers by an environmental
Rhodococcus strain, Appl. Microbiol. Biotechnol., 36 (1991)
120–123.
- M.J. Zenker, R.C. Borden, M.A. Barlaz, Mineralization of
1,4-dioxane in the presence of a structural analog, Biodegradation,
11 (2000) 239–246.
- S. Vainberg, K. McClay, H. Masuda, D. Root, C.W. Condee,
G.J. Zylstra, R.J. Steffan, Biodegradation of ether pollutants by
Pseudonocardia sp. strain ENV478, Appl. Environ. Microbiol.,
72 (2006) 5218–5224.
- S. Mahendra, A. Grostern, L. Alvarez-Cohen, The impact of
chlorinated solvent co-contaminants on the biodegradation
kinetics of 1,4-dioxane, Chemosphere, 91 (2013) 88–92.
- J.S. Han, M.H. So, C.G. Kim, Optimization of biological
wastewater treatment conditions for 1,4-dioxane decomposition
in polyester manufacturing process, Water Sci. Technol.,
59 (2009) 995–1002.
- DoD SERDP, Evaluation of branched hydrocarbons as
stimulants for in situ cometabolic biodegradation of 1,4-dioxane
and its associated co-contaminants, 2013b ER-2303. Avalable at:
www.serdp.org/Program-Areas/Environmental-Restoration/Contaminated-Groundwater/Emerging-Issues/ER-2303/
ER-2303.
- Y.J. An, E.R. Carraway, PAH degradation by UV/H2O2 in per
fluorinated surfactant solutions, Water Res., 36 (2002) 309–314.
- H.M. Coleman, V. Vimonses, C. Leslie, R. Amal, Degradation of
1,4-dioxane in water using TiO2 based photocatalytic and H2O2/UV processes, J. Hazard. Mater., 146 (2007) 496–501.
- P. Ghosh, A.N. Samanta, S. Ray, Oxidation kinetics of
degradation of 1,4-dioxane in aqueous solution by H2O2/Fe(II)
system, J. Environ. Sci. Health, Part A, 45 (2010) 395–399.
- S. Nakagawa, Y. Kenmochi, K. Tutumi, T. Tanaka, I. Hirasawa,
A study on the degradation of endocrine disruptors and dioxins
by ozonation and advanced oxidation processes, J. Chem. Eng.
Jpn., 35 (2002) 840–847.
- M. Pera-Titus, V. Garcia-Molina, M.A. Banos, J. Gimenez,
S. Esplugas, Degradation of chlorophenols by means of
advanced oxidation processes: a general review, Appl. Catal., B,
47 (2004) 219–256.
- S.C. Kwon, J.Y. Kim, S.M. Yoon, W. Bae, K.S. Kang, Y.W.
Rhee, Treatment characteristic of 1,4-dioxane by ozone-based
advanced oxidation processes, J. Ind. Eng. Chem., 18 (2012)
1951–1955.
- M.J. Zenker, R.C. Borden, M.A. Barlaz, Occurrence and
treatment of 1, 4- dioxane in aqueous environments, J. Environ.
Eng. Sci., 20 (2003) 423–432.
- N. Merayo, D. Hermosilla, L. Cortijo, Á. Blanco, Optimization
of the Fenton treatment of 1,4-dioxane and on-line FTIR
monitoring of the reaction, J. Hazard. Mater., 268 (2014)
102–109.
- M.A. Beckett, I. Hua, Enhanced sonochemical decomposition of
1,4-dioxane by ferrous iron, Water Res., 37 (2003) 2372.
- J. Carey, J. Lawrence, H. Tosine, Photodechlorination of PCB’s
in the presence of titanium dioxide in aqueous suspensions,
Bull. Environ. Contam. Toxicol., 16 (1976) 697–701.
- Y. Ohko, D.A. Tryk, K. Hashimoto, A. Fujishima, Autoxidation
of acetaldehyde initiated by TiO2 photocatalysis under weak
UV illumination, J. Phys. Chem. B, 102 (1998) 2699–2704.
- A. Fujishima, X. Zhang, D. Tryk, TiO2 photocatalysis and related
surface phenomena, Surf. Sci. Rep., 63 (2008) 515–582.
- H.S. Son, J.K. Im, K.D. Zoh. A, Fenton-like degradation
mechanism for 1,4-dioxane using zero-valent iron (Fe0) and UV
light, Water Res., 43 (2009) 1457–1463.
- H. Barndõk, L. Cortijo, D. Hermosilla, C. Negro, Á. Blanco,
Removal of 1,4-dioxane from industrial wastewaters: routes
of decomposition under different operational conditions to
determine the ozone oxidation capacity, J. Hazard. Mater., 280
(2014) 340–347.
- H. Barndõk, N. Merayo, L. Blanco, D. Hermosilla, Á. Blanco,
Application of on-line FTIR methodology to study the
mechanisms of heterogeneous advanced oxidation processes,
Appl. Catal., B, 185 (2016) 344–352.
- H. Barndõk, D. Hermosilla, C. Han, D. Dionysiou, C. Negro,
Á. Blanco, Degradation of 1,4-dioxane from industrial wastewater
by solar photocatalysis using immobilized NF-TiO2
composite with monodisperse TiO2 nanoparticles, Appl. Catal.,
B, 180 (2016) 44–52.
- J.R. Alvarez-Corena, J.A. Bergendahl, F.L. Hart, Advanced
oxidation of five contaminants in water by UV/TiO2: reaction
kinetics and byproducts identification, J. Environ. Manage.,
181 (2016) 544–551.
- R.R. Hill, G.E. Jeffs, D.R. Roberts, Photocatalytic degradation
of 1,4-dioxane in aqueous solution, J. Photochem. Photobiol. A,
108 (1997) 55–58.
- B.K. Min, J.E. Heo, N.K. Youn, O.S. Joo, H. Lee, J.H. Kim,
H.S. Kim, Tuning of the photocatalytic 1,4-dioxane degradation
with surface plasm on resonance of gold nanoparticles on
titania, Catal. Commun., 10 (2009) 712–715.
- A. Nakajima, S. Matsui, S. Yanagida, Y. Kameshima, K. Okada,
Preparation and properties of titania-Cs2.5H0.5P12O40
hybrid films, Surf. Coat. Technol., 203 (2009) 1133–1137.
- R.P. Schwarzenbach, P.M. Gschwend, D.M. Imboden, Sorption,
Solid-Aqueous Solution Exchange, in Environmental Organic
Chemistry, John Wiley & Sons Inc., New York, 1993.
- C.E. Wayne, R.P. Wayne, Determination of Chloramphenicol
in Tablets by Electrogenerated Chemiluminescence, In Photochemistry,
Oxford University Press Inc., New York, 2002.
- A.J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous
Solutions, International Union of Pure and Applied Chemistry,
Marcel Dekker Inc., New York, 1985.
- W.H. Glaze, J.W. Kang, D.H. Chapin, The chemistry of water
treatment processes involving ozone, hydrogen peroxide and
ultraviolet radiation, Ozone Sci. Eng., 9 (1987) 335–352.
- G. Bertanza, M. Papa, R. Pedrazzani, C. Repice, G. Mazzoleni,
N. Steimberg, D. Feretti, E. Ceretti, I. Zerbini, EDCs, estrogenicity
and genotoxicity reduction in a mixed (domestic + textile)
secondary effluent by means of ozonation: a full-scale
experience, Sci. Total Environ., 458–460 (2013) 160–168.
- A.M. Deegan, B. Shaik, K. Nolan, K. Urell, M. Oelgemoeller,
J. Tobin, A. Morrissey, Treatment options for wastewater
effluents from pharmaceutical companies, Int. J. Environ. Sci.
Technol., 8 (2011) 649–666.
- T.A. Larsen, J. Lienert, A. Joss, H. Siegrist, How to avoid
pharmaceuticals in the aquatic environment, J. Biotechnol.,
113 (2004) 295–304.
- I. Oller, S. Malato, J.A. Sanchez-Perez, Combination of advanced
oxidation processes and biological treatments for wastewater
decontamination - a review, Sci. Total Environ., 409 (2011)
4141–4166.
- J.H. Suh, M. Mohseni, A study on the relationship between
biodegradability enhancement and oxidation of 1,4-dioxane
using ozone and hydrogen peroxide, Water Res., 38 (2004)
2596–2604.
- J.L. Acero, S.B. Haderlein, T.C. Schmidt, M.J.F. Suter, U. Von
Gunten, MTBE oxidation by conventional ozonation and
the combination ozone/hydrogen peroxide: efficiency of
the processes and bromate formation, Environ. Sci. Technol.,
35 (2001) 4252–4259.
- F. Beltran, B. Acedo, J. Rivas, Use of ozone to remove alachlor
from surface water, Bull. Environ. Contam. Toxicol., 62 (1999)
324–329.
- K. Ikehata, M.G. El-Din, Aqueous pesticide degradation by
ozonation and ozone based advanced oxidation processes: a
review (Part I), Ozone Sci. Eng., 27 (2005) 83–114.
- K. Ikehata, M.G. El-Din, Aqueous pesticide degradation by
ozonation and ozone based advanced oxidation processes: a
review (Part II), Ozone Sci. Eng., 27 (2005) 173–202.
- J. Hoigne, H. Bader, The role of hydroxyl radical reactions in
ozonation processes in aqueous, Water Res., 10 (1976) 377–386.
- J. Hoigne, H. Bader, Rate constants of reactions of ozone with
organic and inorganic compounds in water II, Water Res., 17
(1983) 11.
- A.B. Ross, Selected Specific Rates of Reactions of Transients
from Water in Aqueous Solution: III. Hydroxyl Radical and
Perhydroxyl Radical and Their Radical Ions, U.S. Department
of Commerce, National Bureau of Standards, Washington,
1977.
- L. Bijan, M. Mohseni, Integrated ozone and biotreatment
of pulp mill effluent and changes in biodegradability and
molecular weight distribution of organic compounds, Water
Res., 39 (2005) 3763–3772.
- K. Kosaka, H. Yamada, S. Matsui, K. Shishida, The effects
of the co-existing compounds on the decomposition of
micropollutants using the ozone/hydrogen peroxide process,
Water Sci. Technol., 42 (2000) 353–361.
- J.H. Suh, D.J. Kang, J. Do Park, H.S. Lee, A Study on the
Catalytic Ozonation of 1,4-Dioxane, Proc. 9th Russian-Korean International Symposium on Science and Technology
KORUS´2005, 2005, pp. 169–171.
- V. Maurino, P. Calza, C. Minero, E. Pelizzetti, M. Vincenti, Lightassisted
1,4- dioxane degradation, Chemosphere, 35 (1997)
2675–2688.
- E. Evgenidou, K. Fytianos, I. Poulios, Photocatalytic oxidation
of dimethoate in aqueous solutions, J. Photochem. Photobiol.,
A, 175 (2005) 29–38.
- J. Prousek, Advanced oxidation processes for water treatment.
Photochemical processes, Chem. Listy, 90 (1996) 307–315.
- S. Malato, J. Blanco, M.I. Maldonado, P. Fernandez-Ibanez,
A. Campos, Optimizing solar photocatalytic mineralization of
pesticides by adding inorganic oxidizing species; application to
the recycling of pesticide containers, Appl. Catal., B, 28 (2000)
163–174.
- M.S. Tsao, W.K. Wilmarth, The aqueous chemistry of inorganic
free radicals. I. The mechanism of the photolytic decomposition
of aqueous persulfate ion and evidence regarding the
sulfatehydroxyl radical interconversion equilibrium, J. Phys.
Chem., 63 (1959) 346–352.
- M. Dor, Chimie des Oxydants au Traitment des Eaux., Lavoisier,
Paris, 1989, p. 296.
- K.H. Choo, D.I. Chang, K.W. Park, M.H. Kim, Use of an
integrated photocatalysis/hollow fiber microfiltration system
for the removal of trichloroethylene in water, J. Hazard. Mater.,
152 (2008) 183–190.
- H. Barndok, Advanced Oxidation Processes for the Treatment of
Industrial Wastewaters Containing 1,4-Dioxane, Ph.D. Thesis,
UNIVERSIDAD COMPLUTENSE DE MADRID, FACULTAD
DE CIENCIAS QUÍMICAS, Departamento de Ingeniería Química,
Spain, 2016.
- M.S. Lucas, J.A. Peres, G.L. Puma, Treatment of winery wastewater
by ozone-based advanced oxidation processes (O3, O3/UV
and O3/UV/H2O2) in a pilot-scale bubble column reactor and
process economics, Sep. Purif. Technol., 72 (2010) 235.
- N. Azbar, T. Yonar, K. Kestioglu, Comparison of various
advanced oxidation processes and chemical treatment methods
for COD and color removal from a polyester and acetate fiber
dyeing effluent, Chemosphere, 55 (2004) 35.
- R.G. Parag, Treatment of wastewater streams containing phenolic
compounds using hybrid techniques based on cavitation: a
review of the current status and the way forward, Ultrason.
Sonochem., 15 (2008) 1–15.
- I.A. Balcioglu, M. Otker, Treatment of pharmaceutical wastewater
containing antibiotics by O3 and O3/H2O2 processes,
Chemosphere, 50 (2003) 85.
- S. Esplugas, J. Gimenez, S. Contreras, E. Pascual, M. Rodriquez,
Comparison of different advanced oxidation processes for
phenol degradation, Water Res., 36 (2002) 1034.
- T.O. Kwon, B.B. Park, I.S. Moon, advanced oxidation process for
the treatment of terephthalic acid wastewater using UV, H2O2
and O3: organic and color removal studies, Korean Chem. Eng.
Res., 45 (2007) 648.
- R.G. Ball, Soil and Water Remediation Method and Apparatus,
US Patent No. 7,667,087,” 7,667,087 B2, 2010.
- SERDP (Strategic Environmental Research and Development
Program), In Situ Chemical Oxidation for Groundwater
Remediation, Vol. 3. Springer, New York, NY, 2011,
- R.G. Ball, Chemical Oxidation Method and Compounds US,
Patent No. 8,049,056,” 8,049,056 B2, 2011.
- S.G. Huling, B.E. Pivetz, In-situ Chemical Oxidation. U.S.
Environmental Protection Agency, Office of Research and
Development, National Risk Management Research Laboratory,
2006.
- A. Tsitonaki, B. Petri, M. Crimi, H. Mosbæk, R.L. Siegrist,
P.L. Bjerg, In situ chemical oxidation of contaminated soil and
groundwater using persulfate, a review, Crit. Rev. Environ. Sci.
Technol., 40 (2008) 55–91.
- P.A. Block, R.A. Brown, D. Robinson, Novel activation
technologies for sodium persulfate in situ chemical oxidation.
In: Proc. Fourth International Conference on the Remediation
of Chlorinated and Recalcitrant Compound, pp. 1–8, Vol. 2004,
Paper 2A-0.
- E.S. FMC, In-situ Chemical Oxidation with KlozurTM Activated
Persulfate: Comingled Plume of Chlorinated Solvents and 1,4
Dioxane. FMC Environmental Solutions, 2007.
- G. Cronk, Case Study: Comparison of Multiple Activation
Methods for Sodium Persulfate Isco Treatment, In: Proc. Sixth
International Conference on Remediation of Chlorinated and
Recalcitrant Compounds, 2008.
- M.D. Paul, A.W. Barbara, K.M. Kelly, B. James, Fast-track
Remedial Design of Full-scale ISCO Application Using Pilot
Scale Testing and Field Screening Parameters, Proc. Annual
International Conference on Soils, Sediments, Water and
Energy, Vol. 15, 2010.
- D. Eberle, R. Ball, T.B. Boving, Peroxone activated persulfate
treatment of 1,4-dioxane in the presence of chlorinated solvent
co-contaminants, Chemosphere, 144 (2016) 728–735.
- F. Harber, J.J. Weiss, The catalytic decomposition of hydrogen
peroxide by iron salts, J. Am. Chem. Soc., 45 (1934) 338–351.
- J.J. Pignatello, E. Oliveros, A. MacKay, Advanced oxidation
processes for organic contaminant destruction based on the
Fenton reaction and related chemistry, Crit. Rev. Environ. Sci.
Technol., 36 (2006) 1–84.
- D. Hermosilla, M. Cortijo, C.P. Huang, The role of iron on the
degradation and mineralization of organic compounds using
conventional Fenton and photo- Fenton processes, Chem. Eng.
J., 155 (2009) 637–646.
- R.F.F. Pontes, J.E.F. Moraes, A. Machulek Jr., J.M. Pinto,
A mechanistic kinetic model for phenol degradation by the
Fenton process, J. Hazard. Mater., 176 (2010) 402–413.
- J. Kiwi, C. Pulgarin, P. Peringer, M. Gratzel, Beneficialeffects
of homogeneous photo-Fenton pretreatment upon the
biodegradation of anthraquinone sulfonate in waste-water
treatment, Appl. Catal., B, 3 (1993) 85–99.
- C. Pulgarin, J. Kiwi, Overview on photocatalytic and electrocatalytic
pretreatment of industrial non-biodegradable
pollutants and pesticides, Chimia, 50 (1996) 50–55.
- H.S. Kim, B.H. Kwon, S.J. Yoa, I.K. Kim, Degradation of
1,4-dioxane by photo-Fenton processes, J. Chem. Eng. Jpn.,
41 (2008) 829–835.
- E. Khan, W. Wirojanagud, N. Sermsai, Effects of iron type
in Fenton reaction on mineralization and biodegradability
enhancement of hazardous organic compounds, J. Hazard.
Mater., 161 (2009) 1024–1034.
- E. De Torres-Socias, I. Fernandez-Calderero, I. Oller,
M.J. Trinidad-Lozano, F.J. Yuste, S. Malato, Cork boiling wastewater
treatment at pilot plant scale: comparison of solar photo-
Fenton and ozone (O3, O3/H2O2). Toxicity and biodegradability
assessment, Chem. Eng. J., 234 (2013) 232–239.
- C. Mendoza-Marin, P. Osorio, N. Benitez, Decontamination
of industrial wastewater from sugarcane crops by combining
solar photo-Fenton and biological treatments, J. Hazard.
Mater., 177 (2010) 851–855.
- I. Oller, S. Malato, J.A. Sanchez-Perez, M.I. Maldonado,
W. Gernjak, L.A. Perez-Estrada, J.A. Munoz, C. Ramos,
C. Pulgarin, Pre-industrial-scale combined solar photo-fenton
and immobilized biomass activated-sludge biotreatment, Ind.
Eng. Chem. Res., 46 (2007) 7467–7475.
- T.F.C.V. Silva, A. Fonseca, I. Saraiva, V.J.P. Vilar, R.A.R. Boaventura,
Biodegradability enhancement of a leachate after
biological lagooning using a solar driven photo-Fenton
reaction, and further combination with an activated sludge
biological process, at pre-industrial scale, Water Res., 47 (2013)
3543–3557.
- P.A. Soares, T.F.C.V. Silva, D.R. Manenti, S.M.A.G.U. Souza,
R.A.R. Boaventura, V.J.P. Vilar, Insights into real cotton-textile
dyeing wastewater treatment using solar advanced oxidation
processes, Environ. Sci. Pollut. Res., 21 (2014) 932–945.
- B.S. Souza, F.C. Moreira, M.W.C. Dezotti, V.J.P. Vilar,
R.A.R. Boaventura, Application of biological oxidation and
solar driven advanced oxidation processes to remediation of
winery wastewater, Catal. Today, 209 (2013) 201–208.
- V. Ragaini, E. Selli, C. Letizia, B.C. Pirola, Sono-photocatalytic
degradation of 2-chlorophenol in water: kinetic and energetic
comparison with other techniques, Ultrason. Sonochem.,
8 (2001) 251–258.
- I.Z. Shirgaonkar, A.B. Pandi, Sonophotochemical destruction
of aqueous solution of 2,4,6-trichlorophenol, Ultrason. Sonochem.,
5 (1998) 53–61.
- Y. Kado, M. Atobe, T. Nonaka, Ultrasonic effects on electro
organic processes ± Part 20. Photocatalytic oxidation of
aliphatic alcohols in aqueous suspension of TiO2 powder,
Ultrason. Sonochem., 8 (2001) 69–74.
- G.M. Klecˇka, S.J. Gonsior, Removal of 1,4-dioxane from
wastewater, J. Hazard. Mater., 13 (1986) 161–168.
- S. Chitra, K. Paramasivan, M. Cheralathan, P.K. Sinha,
Degradation of 1,4-dioxane using advanced oxidation processes,
Environ. Sci. Pollut. Res., 19 (2012) 871–878.
- J. Maekawa, K. Mae, H. Nakagawa, Degradation of 1,4-dioxane
by the ferrioxalate-mediated photo-Fenton process using UV
or white LED irradiation, J. Chem. Eng. Jpn., 49 (2016) 305–311.
- E. Brillas, I. Sires, M.A. Oturan, Electro-Fenton process and
related electrochemical technologies based on Fenton’s
reaction chemistry, Chem. Rev., 109 (2009) 6570–6631.
- O. Ganzenko, D. Huguenot, E.D. van Hullebusch, G. Esposito,
M.A. Oturan, Electrochemical advanced oxidation and biological
processes for wastewater treatment: a review of the
combined approaches, Environ. Sci. Pollut. Res., 21 (2014)
8493–8524.
- P.V. Nidheesh, R. Gandhimathi, Trends in electro-Fenton
process for water and wastewater treatment: an overview,
Desalination, 299 (2012) 1–15.
- J. Antoni, M.C. Liu, P. Chewpreecha, Kinetics of aniline
degradation by Fenton and electro-Fenton processes, Water
Res., 40 (2006) 1841–1847.
- Y.H. Huang, Y.F. Huang, P.S. Chang, C.Y. Chen, Comparative
study of oxidation of dye-Reactive Black B by different
advanced oxidation processes: Fenton, electro-Fenton and
photo-Fenton, J. Hazard. Mater., 154 (2008) 655–662.
- H. Nakagawa, S. Takagi, J. Maekawa, Fered-Fenton process
for the degradation of 1,4-dioxane with an activated carbon
electrode: a kinetic model including active radicals, Chem.
Eng. J., 296 (2016) 398–405.
- R. Mantha, K.E. Taylor, N. Biswas, J.K. Bewtra, A continuous
system for Fe0 reduction of nitrobenzene in synthetic
wastewater, Environ. Sci. Technol., 35 (2001) 3231–3236.
- J.K. Moor, S.C Doney, D.M. Glover, I.Y. Fung, Iron cycling and
nutrient-limitation patterns in surface waters of world ocean,
Deep-Sea Res. II, 49 (2002) 493–507.
- W. Arnold, A.L. Roberts, Pathway and kinetics of chlorinated
ethylene and chlorinated acetylene reaction with Fe0 particles,
Environ. Sci. Technol., 34 (2000) 1794–1805.
- W.F. Wust, R. Kober, O. Schlicker, A. Dahmke, Combined zeroand
first-order kinetic model of the degradation TCE and cis-DCE with commercial iron, Environ. Sci. Technol., 33 (1999)
4304–4309.
- B.H.J. Bielski, D.E. Cabelli, R.L. Arudi, A.B. Ross, Reactivity of
OH2/O2 radicals in aqueous solution, J. Phys. Chem. Ref. Data,
14 (1985) 1041–1100.
- M. Balmer, B. Sulzberger, Atrazine degradation in irradiated
iron/oxalate systems: effect of pH and oxalate, Environ. Sci.
Technol., 33 (1999) 2148–2424.
- J.S. Jeong, J.Y. Joon, pH effect on OH radical production in
photo/ferrioxalate system, Water Res., 39 (2005) 2893–2900.
- M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann,
Environmental applications of semiconductor photocatalysis,
Chem. Rev., 95 (1995) 69.
- D.M. Blake, Bibliography of Work on the Heterogeneous
Photocatalytic Removal of Hazardous Compounds from Water
and Air, National Renewable Energy Laboratory, Golden, CO,
2000.
- A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide
photocatalysis, J. Photochem. Photobiol., C, 1 (2000) 1.
- A. Nakajima, M. Tanaka, Y. Kameshima, K. Okada, Sonophotocatalytic
destruction of 1,4-dioxane in aqueous systems
by HF-treated TiO2 powder, J. Photochem. Photobiol. A,
167 (2004) 75.
- M. Mehrvar, W.A. Anderson, M. Moo-Young, Comparison
of the photoactivities of two commercial titanium dioxide
powders in the degradation of 1,4-dioxane, Int. J. Photoenergy,
4 (2002) 141–146.
- A. Mills, S. LeHunte, An overview of semiconductor photocatalysis,
J. Photochem. Photobiol. A, 108 (1997) 1.
- S. Yamazaki, T. Tanimura, A. Yoshida, K. Hori, Reaction mechanism
of photocatalytic degradation of chlorinated ethylenes on
porous TiO2 pellets: Cl radical-initiated mechanism, J. Phys.
Chem. A, 108 (2004) 5183.
- L.L. Costa Alexandre G.S. Prado, TiO2 nanotubes as recyclable
catalyst for efficient photocatalytic degradation of indigo
carmine dye, J. Photochem. Photobiol. A, 201 (2009) 45–49.
- S. Padikkaparambil, B. Narayanan, Z. Yaakob, S. Viswanathan,
S.M. Tasirin, Au/TiO2 Reusable photocatalysts for dye
degradation, Int. J. Photoenergy, (2013) 1–10, Article ID 752605.
- Y. Xie, C. Yuan, X. Li, Photosensitized and photocatalyzed
degradation of azo dye using Lnn+-TiO2 sol in aqueous
solution under visible light irradiation, Mater. Sci. Eng. B,
117 (2005) 325–333.
- D. Beydoun, R. Amal, G.K.C. Low, S. McEvoy, Novel
photocatalyst: titania-coated magnetite. Activity and photodissolution,
J. Phys. Chem. B, 104 (2000) 4387–4396.
- C. Han, R. Luque, D.D. Dionysiou, Facile preparation of
controllable size monodisperse anatase titania nanoparticles,
Chem. Commun., 48 (2012) 1860–1862.
- N. Miranda-Garcia, S. Suarez, B. Sanchez, J.M. Coronado,
S. Malato, M. Ignacio Maldonado, Photocatalytic degradation
of emerging contaminants in municipal wastewater treatment
plant effluents using immobilized TiO2 in a solar pilot plant,
Appl. Catal., B, 103 (2011) 294–301.
- M. Pelaez, P. Falaras, V. Likodimos, A.G. Kontos, A.A. de
la Cruz, K. O’Shea, D.D. Dionysiou, Synthesis, structural
characterization and evaluation of sol–gel-based NF-TiO2
films with visible light-photoactivation for the removal of
microcystin-LR, Appl. Catal., B, 99 (2010) 378–387.
- C.D. Vecitis, T. Lesko, A.J. Colussi, M.R. Hoffmann, Sonolytic
decomposition of aqueous bioxalate in the presence of ozone,
J. Phys. Chem. A, 114 (2010) 4968–4980.
- K. Lekkerkerker-Teunissen, A.H. Knol, L.P. van Altena,
C.J. Houtman, J. Verberk, J.C. van Dijk, Serial ozone/peroxide/low pressure UV treatment for synergistic and effective
organic micropollutant conversion, Sep. Purif. Technol., 100
(2012) 22–29.
- G.G. Bessegato, J.C. Cardoso, B.F. da Silva, M.V.B. Zanoni,
Combination of photoelectrocatalysis and ozonation: a novel
and powerful approach applied in Acid Yellow 1 mineralization,
Appl. Catal., B, 180 (2016) 161–168.
- N. Kishimoto, Y. Yasuda, H. Mizutani, Y. Ono, Applicability of
ozonation combined with electrolysis to 1,4-dioxane removal
from wastewater containing radical scavengers, Ozone-Sci.
Eng., 29 (2007) 13–22.
- J.P. Pocostales, M.M. Sein, W. Knolle, C. von Sonntag, T.C.
Schmidt, Degradation of Ozone-refractory organic phosphates
in wastewater by ozone and ozone/ hydrogen peroxide
(peroxone): the role of ozone consumption by dissolved
organic matter, Environ. Sci. Technol., 44 (2010) 8248–8253.
- H. Wang, B. Bakheet, S. Yuan, X. Li, G. Yu, S. Murayama,
Y. Wang, Kinetics and energy efficiency for the degradation of
1,4-dioxane by electro-peroxone process, J. Hazard. Mater., 294
(2015) 90–98.
- P. Frangos, H.J. Wang, W.H. Shen, G. Yu, S.B. Deng, J. Huang,
B. Wang, Y.J. Wang, A novel photoelectro-peroxone process for
the degradation and mineralization of substituted benzenes in
water, Chem. Eng. J., 286 (2016) 239–248.
- C. von Sonntag, U. von Gunten, Chemistry of Ozone in
Water and Wastewater Treatment. From basic Principles to
Applications, IWA Publishing, 2012.
- O. Legrini, E. Oliveros, A.M. Braun, Photochemical processes
for water treatment, Chem. Rev., 93 (1993) 671–698.
- W. Shen, Y. Wang, J. Zhan, B. Wang, J. Huang, S. Deng,
G. Yu, Kinetics and operational parameters for 1,4-dioxane
degradation by the photoelectro-peroxone process, Chem.
Eng. J., 310 (2017) 249–258.
- K.-C. Lee, K.-H. Choo, Hybridization of TiO2 photocatalysis
with coagulation and flocculation for 1,4-dioxane removal in
drinking water treatment, Chem. Eng. J., 231 (2013) 227–235.
- S.S. Chin, K. Chiang, A.G. Fane, The stability of polymeric
membranes in a TiO2 photocatalysis process, J. Membr. Sci.,
275 (2006) 202–211.
- R. Molinari, M. Borgese, E. Drioli, L. Palmisano, M. Schiavello,
Hybrid processes coupling photocatalysis and membranes
for degradation of organic pollutants in water, Catal. Today,
75 (2002) 77–85.
- G. Balasubramanian, D.D. Dionysiou, M.T. Suidan, I. Baudin,
J.M. Laîne, Evaluating the activities of immobilized TiO2
powder films for the photocatalytic degradation of organic
contaminants in water, Appl. Catal., B. 47 (2004) 73–84.
- J. Fu, M. Ji, Z. Wang, L. Jin, D. An, A new submerged membrane
photocatalysis reactor (SMPR) for fulvic acid removal using a
nano-structured photocatalyst, J. Hazard. Mater., 131 (2006)
238–242.
- S. Mozia, Photocatalytic membrane reactors (PMRs) in water
and wastewater treatment. a review, Sep. Purif. Technol.,
73 (2010) 71–91.
- V.C. Sarasidis, S.I. Patsios, A.J. Karabelas, A hybrid photocatalysis-
ultrafiltration continuous process: the case of polysaccharide
degradation, Sep. Purif. Technol., 80 (2011) 73–80.
- K.-H. Choo, R. Tao, M.-J. Kim, Use of a photocatalytic
membrane reactor for the removal of natural organic matter
in water: effect of photoinduced desorption and ferrihydrite
adsorption, J. Membr. Sci., 322 (2008) 368–374.
- P. Wang, A.G. Fane, T.T. Lim, Evaluation of a submerged
membrane vis-LED photoreactor (sMPR) for carbamazepine
degradation and TiO2 separation, Chem. Eng. J., 215–216
(2013) 240–251.
- S.-A. Lee, K.-H. Choo, C.-H. Lee, H.-I. Lee, T. Hyeon, W. Choi,
H.-H. Kwon, Use of ultrafiltration membranes for the separation
of TiO2 photocatalysts in drinking water treatment, Ind. Eng.
Chem. Res., 40 (2001) 1712–1719.
- R. Goei, Z. Dong, T.-T. Lim, High-permeability pluronicbased
TiO2 hybrid photocatalytic membrane with hierarchical
porosity: fabrication, characterizations and performances,
Chem. Eng. J., 228 (2013) 1030–1039.
- R. Goei, T.-T. Lim, Ag-decorated TiO2 photocatalytic
membrane with hierarchical architecture: photocatalytic and
anti-bacterial activities, Water Res., 59 (2014) 207–218.
- S.K. Papageorgiou, F.K. Katsaros, E.P. Favvas, G.E. Romanos,
C.P. Athanasekou, K.G. Beltsios, O.I. Tzialla, P. Falaras, Alginate
fibers as photocatalyst immobilizing agents applied in hybrid
photocatalytic/ultrafiltration water treatment processes, Water
Res., 46 (2012) 1858–1872.
- A.D. Syafei, C.-F. Lin, C.-H. Wu, Removal of natural organic
matter by ultrafiltration with TiO2-coated membrane under
UV irradiation, J. Colloid Interface Sci., 323 (2008) 112–119.
- T.-T. Lim, P.-S. Yap, M. Srinivasan, A.G. Fane, TiO2/AC
composites for synergistic adsorption-photocatalysis processes:
present challenges and further developments for water
treatment and reclamation, Crit. Rev. Environ. Sci. Technol.,
41 (2011) 1173–1230.
- S. Mozia, M. Tomaszewska, A.W. Morawski, A new photocatalytic
membrane reactor (PMR) for removal of azo-dye
Acid Red 18 from water, Appl. Catal., B, 59 (2005) 131–137.
- S. Mozia, M. Tomaszewska, A.W. Morawski, Removal of azodye
Acid Red 18 in two hybrid membrane systems employing
a photodegradation process, Desalination, 198 (2006) 183–190.
- K.-C. Lee, H.-J. Beak, K.-H. Choo, Membrane photoreactor
treatment of 1,4-dioxane-containing textile wastewater effluent:
performance, modeling, and fouling control, Water Res.,
86 (2015) 58–65.
- R. Gómez, T.L, ó pez, E. Ortiz-Islas, J. Navarrete, E. Sánchez,
F. Tzompanztzi, X. Bokhimi, Effect of sulfation on the
photoactivity of TiO2 sol–gel derived catalysts, J. Mol. Catal.,
A Chem., 193 (2003) 217.
- X. Wang, J.C. Yu, Y. Hou, X. Fu, Three-dimensionally ordered
mesoporous molecular-sieve films as solid superacid photocatalysts,
Adv. Mater., 17 (2005) 99.
- G. Col ó n, M.C. Hoidalgo, G. Munuera, I. Ferino, M.G. Cutrufello,
J.A. Navío, Cu-doped TiO2 systems with improved
photocatalytic activity, Appl. Catal., B, 63 (2006) 45.
- R.-D. Sun, T. Nishikawa, A. Nakajima, T. Watanabe, K. Hashimoto,
TiO2/polymer composite materials with reduced generation
of toxic chemicals during and after combustion—effect of
HF-treated TiO2, Polym. Degrad. Stab., 78 (2002) 479–484.
- S. Suzaki, T. Okazaki, Effect of surface fluorination on solid
acidity and catalytic activity of TiO2 and TiO2-SiO2, J. Chem.
Soc. Jpn., 84 (1981) 330–335 (in Japanese).
- J.M. Pettibone, D.M. Cwiertny, M. Scherer, V.H. Grassian,
Adsorption of organic acids on TiO2 nanoparticles: effects
of pH, nanoparticle size, and nanoparticle aggregation.
Langmuir, 24 (2008) 6659–6667.
- V.K. Sharma, N.J.D. Graham, X.-Z. Li, B.-L. Yuan, Ferrate (VI)
enhanced photocatalytic oxidation of pollutants in aqueous
TiO2 suspensions, Environ. Sci. Pollut. Res., 17 (2010) 453–461.
- M. Mehrvar, W.A. Anderson, M. Moo-Young, Photocatalytic
degradation of aqueous tetrahydrofuran, 1,4-dioxane, and
their mixture with TiO2, Int. J. Photoenergy, 2 (2000) 67–80.
- P. Ettireddy, G. Reddy, G. Smirniotis, Sonophotocatalytic
destruction of organic contaminantsin aqueous systems on
TiO2 powders, Appl. Catal., B, 32 (2001) 95–105.
- S. Sakthivel, N. Neppolian, M.V. Shankar, B. Arabindoo,
M. Palanichamy, V. Murugesan, Solar photocatalytic degradation
of azo dye: comparison of photocatalytic efficiency of
ZnO and TiO2, Sol. Energy Mater. Sol. Cells, 77 (2004) 65–82.
- R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Advanced
oxidation processes (AOP) for water purification and recovery,
Catal. Today, 53 (1999) 51–59.
- M. Mehrvar, W.A. Anderson, M. Moo-Young, Photocatalytic
degradation of aqueous organic solvents in the presence of
hydroxyl radical scavengers, Int. J. Photoenergy, 3 (2001)
187–191.
- C.D. Adams, P.A. Scanlan, N.D. Secrist, Oxidation and
biodegradability enhance-ment of 1,4-dioxane using hydrogen
peroxide and ozone, Environ. Sci. Technol., 28 (1994)
1812–1818.
- W.H. Glaze, Reaction products of ozone – a review, Environ.
Health Persp., 69 (1986) 151–157.
- J. Staehelin, J. Hoigne, Decomposition of ozone in water –
rate of initiation by hydroxide ions and hydrogen-peroxide,
Environ. Sci. Technol., 16 (1982) 676–681.
- A. Fischbacher, J. von Sonntag, C. von Sonntag, T.C. Schmidt,
The •OH radical yield in the H2O2 + O3(peroxone) reaction,
Environ. Sci. Technol., 47 (2013) 9959–9964.
- M.M. Sein, A. Golloch, T.C. Schmidt, C. von Sonntag, No
marked kinetic isotope effect in the peroxone (H2O2/D2O2 + O3)
reaction: mechanistic consequences, Chemphyschem, 8 (2007)
2065–2067.
- S.W. Lam, M. Hermawan, H.M. Coleman, K. Fisher, R. Amal,
The role of copper(II) ions in the photocatalytic oxidation of
1,4-dioxane, J. Mol. Catal. A, 278 (2007) 152–159.
- H.S. Son, S.B. Choi, E. Khan, K.D. Zoh, Removal of 1,4-dioxane
from water using sonication: effect of adding oxidants on the
degradation kinetics, Water Res., 40 (2006) 692.
- R.J. Brandi, C.A. Martín, O.M. Alfano, A.E. Cassano, A
laboratory reactor for photocatalytic studies in slurry
operation, J. Adv. Oxid. Technol., 5 (2002) 175–185.
- C.N. Chang, Y.S. Ma, G.C. Fang, A.C. Chao, M.C. Tsai, H.F. Sung,
Decolorizing of lignin wastewater using the photochemical
UV/TiO2 process, Chemosphere. 56 (2004) 1011–1017.
- N. Merayo, D. Hermosilla, L. Blanco, L. Cortijo, A. Blanco,
Assessing the application of advanced oxidation processes,
and their combination with biological treatment, to effluents
from pulp and paper industry, J. Hazard. Mater., 262 (2013)
420–427.
- M.F. Kabir, E. Vaisman, C.H. Landford, A. Kantzas, Effects of
hydrogen peroxide in a fluidized bed photocatalytic reactor
for wastewater purification, Chem. Eng. J., 118 (2006) 207–212.
- I. Poulios, E. Micropoulou, R. Panou, E. Kostopoulou,
Photooxidation of eosinYin the presence of semiconducting
oxides, Appl. Catal., B, 41 (2003) 345–355.
- A.E.H. Machado, J.A. de Miranda, R.F. de Freitas, E.T.F.M.
Duarte, L.F. Ferreira, Y.D.T. Albuquerque, R. Ruggeiro,
C. Sattler, L. de Oliveria, Destruction of the organic matter
present in effluent from a cellulose and paper industry
using photocatalysis, J. Photochem. Photobiol., A, 155 (2003)
231–241.
- H.D. Chun, J.K. Park, Photocatalytic oxidation of chlorinated
organic compounds over TiO2 membrane coated on glass tube,
J. Hazard. Mater., 11 (1994) 501–510.
- R. Dillert, I. Fornefett, U. Siebers, D. Bahnemann, Photocatalytic
degradation of trinitrotoluene and trinitrobenzene: influence
of hydrogen peroxide, J. Photochem. Photobiol., A, 94 (1996)
231–236.
- Y.J. Hong, Preparation and Characterization of Sol–Gel Derived
Peroxo Titania and Its Application for Nano-Crystalline Dye
Sensitized Solar Cell, Ph.D. thesis, University of New South
Wales, Sydney, Australia, 2002.
- H. Yang, K. Zhang, R. Shi, X. Li, X. Dong, Y. Yu, Sol–gel
synthesis of TiO2 nanoparticles and photocatalytic degradation
of methyl orange in aqueous TiO2 suspensions, J. Alloys
Compd., 413 (2006) 302–306.
- F. Haque, E. Vaisman, C.H. Langford, A. Kantzas, Preparation
and performance of integrated photocatalyst adsorbent (IPCA)
employed to degrade model organic compounds in synthetic
wastewater, J. Photochem. Photobiol., A, 169 (2005) 21–27.
- K. Huang, R.A. Couttenye, G.E. Hoag, Kinetics of Heatassisted
Persulfate Oxidation of Methyl Tert-butyl Ether
(MTBE), 49 (2002) 413–420.
- C. Liang, Z.S. Wang, C.J. Bruell, Influence of pH on persulfate
oxidation of TCE at ambient temperatures, Chemosphere,
66 (2007) 106–113.
- S. Yanagida, A. Nakajima, Y. Kameshima, K. Okada, Effect of
applying voltage on photocatalytic destruction of 1,4-dioxane
in aqueous system, Catal. Commun., 7 (2006) 1042–1046.
- A. Tsuchida, T. Shimamura, S. Sawada, S. Sato, N. Serpone,
S. Horikoshi, In-liquid Plasma. a stable light source for
advanced oxidation processes in environmental remediation,
Rad. Phys. Chem., 147 (2018) 53–58.
- C. Tang, V. Chen, The photocatalytic degradation of reactive
black 5 using TiO2/UV in an annular photoreactor, Water Res.,
38 (2004) 2775–2781.
- P. Yao, K.H. Choo, M.H. Kim, A hybridized photocatalysis–microfiltration system with iron oxide-coated membranes for the
removal of natural organic matter in water treatment: effects of
iron oxide layers and colloids, Water Res., 43 (2009) 4238–4248.
- O.M. Alfano, D. Bahnemann, A.E. Cassano, R. Dillert,
R. Goslich, Photocatalysis in water environments using artificial
and solar light, Catal. Today, 58 (2000) 199–230.
- C.S. Zalazar, C.A. Martin, A.E. Cassano, Photocatalytic intrinsic
reaction kinetics. II. Effects of oxygen concentration on the
kinetics of the photocatalytic degradation of dichloroacetic
acid, Chem. Eng. Sci., 60 (2005) 4311–4322.
- H. Kiang, X. Li, Y. Yang, K. Sze, Effects of dissolved oxygen,
pH, and anions on the 2,3-dichlorophenol degradation by
photocatalytic reaction with anodic TiO2 nanotube films,
Chemosphere, 73 (2008) 805–812.
- Y. Wang, C. Hong, TiO2-mediated photomineralization
of 2-chlorobiphenyl: the role of O2, Water Res., 34 (2000)
2791–2797.
- H. Gerischer, A. Heller, The role of oxygen in photooxidation
of organic molecules on semiconductor particles, J. Phys.
Chem., 95 (1991) 5261–5267.
- N.K. Youn, J.E. Heo, O.S. Joo, H. Lee, J. Kim, B.K. Min, The
effect of dissolved oxygen on the 1,4-dioxane degradation with
TiO2 and Au–TiO2 photocatalysts, J. Hazard. Mater., 177 (2010)
216–221.
- S. Chavadej, P. Phuaphromyod, E. Gulari, P. Rangsunvigit,
T. Sreethawong, Photocatalytic degradation of 2-propanol by
using Pt/TiO2 prepared by microemulsion technique, Chem.
Eng. J., 137 (2008) 489–495.
- V. Iliev, D. Tomova, L. Bilyarska, A. Eliyas, L. Petrov,
Photocatalytic properties of TiO2 modified with platinum
and silver nanoparticles in the degradation of oxalic acid in
aqueous solution, Appl. Catal., B, 63 (2006) 266–271.
- Y. Ma, C. Chang, Y. Chiang, H. Sung, A.C. Chao, Photocatalytic
degradation of lignin using Pt/TiO2 as the catalyst,
Chemosphere, 71 (2008) 998–1004.
- A. Dawson, P.V. Kamat, Semiconductor–metal nanocomposites.
Photoinduced fusion and photocatalysis of
gold-capped TiO2 (TiO2/gold) nanoparticles, J. Phys. Chem. B,
105 (2001) 960–966.
- V. Iliev, D. Tomova, L. Bilyarska, G. Tyuliev, Influence of the size
of gold nanoparticles deposited on TiO2 upon the photocatalytic
destruction of oxalic acid, J. Mol. Catal. A, 263 (2007) 32–38.
- D. Chen, M. Sivakumar, K.A. Ray, Dev. Synthesis of nickel
nanoparticles in water-in-oil microemulsions, Chem. Eng.
Miner. Process, 8 (2000) 506.
- D.F. Ollis, Photocatalytic purification and remediation of
contaminated air and water, Surf. Chem. Catal., 3 (2000) 407.
- S.W. Lam, K. Chiang, T.M. Lim, R. Amal, G.K.-C. Low, Effect
of charge trapping species of cupric ions on the photocatalytic
oxidation of resorcinol, Appl. Catal., B, 55 (2005) 123.
- D. Beydoun, H. Tse, R. Amal, G.K.-C. Low, S. McEvoy, Effect
of copper(II) on the photocatalytic degradation of sucrose,
J. Mol. Catal., A, 177 (2002) 265.
- E.C. Butler, A.P. Davis, Photocatalytic oxidation in aqueous
titanium dioxide suspensions: the influence of dissolved
transition metals, J. Photochem. Photobiol., A, 70 (1993) 273.
- K.-I. Okamoto, Y. Yamamoto, H. Tanaka, M. Tanaka, A. Itaya,
Heterogeneous photocatalytic decomposition of phenol over
TiO2 powder, Bull. Chem. Soc. Jpn., 58 (1985) 2015.
- N. San, A. Hatipoglu, G. Kocturk, Z. Cinar, Photocatalytic
degradation of 4-nitrophenol in aqueous TiO2 suspensions:
theoretical prediction of the intermediates, J. Photochem.
Photobiol. A, 146 (2002) 189.
- V. Brezova, A. Blazkova, E. Borosova, M. Sepan, R. Fiala,
The influence of dissolved metal ions on the photocatalytic
degradation of phenol in aqueous TiO2 suspensions, J. Mol.
Catal. A, 98 (1995) 109.
- S.W. Lam, M. Hermawan, H.M. Coleman, K. Fisher, R. Amal.
The role of copper (II) ions in the photocatalytic oxidation of
1,4-dioxane, J. Mol. Catal. A, 278 (2007) 152–159.
- W.J. Cooper, C.J. Cramer, N.H. Martin, S.P. Mezyk, K.E. O’Shea,
C. vonSonntag, Free radical mechanisms for the treatment
of methyl tert-butyl ether (MTBE) via advanced oxidation/reductive processes in aqueous solutions, Chem. Rev., 109
(2009) 1302–1345.
- C. von Sonntag, H.-P. Schuchmann, Peroxyl Radicals in
Aqueous Solutions, in: Z. Alfassi, Ed., Peroxyl Radicals, John
Wiley, New York, 1997, pp. 173–234.
- J.E. Bennett, R. Summers, Product studies of the mutual
termination reactions of sec-alkylperoxy radicals: evidence
for non-cyclic termination, Can. J. Chem., 52 (1974)
1377–1379.
- M.A. Beckett, I. Hua, Elucidation of the 1,4-dioxane
decomposition pathway at discrete ultrasonic frequencies,
Environ. Sci. Technol., 34 (2000) 3944–3953.
- D. Vasudevan, A.T. Stone, Adsorption of catechols, 2-aminophenols,
and 1,2-phenylenediamines at the metal (hydr)oxide/water interface: effect of ring substituents on the adsorption
onto TiO2, Environ. Sci. Technol., 30 (1996) 1604.
- N. Karpel Vel Leitner, M. Dore, Mechanism of the reaction
between hydroxyl radicals and glycolic, glyoxylic, acetic and
oxalic acids in aqueous solution: consequence on hydrogen
peroxide consumption in the H2O2/UV and O3/H2O2 systems,
Water Res., 31 (1997) 1383–1397.
- Y. Tan, Y.B. Lim, K.E. Altieri, S.P. Seitzinger, B.J. Turpin,
Mechanisms leading to oligomers and SOA through aqueous
photooxidation: insights from OH radical oxidation of acetic
acid and methylglyoxal, Atmos. Chem. Phys., 12 (2012) 801–813.
- G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical
review of rate constants for reactions of hydrated electrons,
hydrogen atoms and hydroxyl radicals (•OH/•O− in aqueous
solution, J. Phys. Chem. Ref. Data, 17 (1988) 513–886.
- A. Abe, Distribution of 1,4-dioxane in relation to possible
sources in the water environment, Sci. Total Environ. 227
(1999) 41–47.
- A.A. Safarzadeh, J.R. Bolton, S.R. Caster, Ferrioxalate-mediated
photodegradation of organic pollutants in contaminated
water, Water Res., 31 (1997) 787–798.
- E.L. Fincher, W.J. Payne, Bacterial utilization of ether glycols,
Appl. Microbiol., 10 (1962) 542–547.
- F.J. Barajas-Rodriguez, L.C. Murdoch, R.W. Falta, D.L. Freedman,
Simulation of in situ biodegradation of 1,4-dioxane under
metabolic and cometabolic conditions, J. Contam. Hydrol.,
223 (2019) 103464.
- S. Mahendra, L. Alvarez-Cohen, Pseudonocardia dioxanivorans
sp. nov., a novel actinomycete that grows on 1,4-dioxane, Int. J.
Syst. Evol. Microbiol., 55 (2005) 593–598.
- U. Kohlweyer, B. Thiemer, T. Schrader, J.R. Andreesen,
Tetrahydrofuran degradation by a newly isolated culture of
Pseudonocardia sp. strain K1, FEMS Microbiol. Lett., 186 (2000)
301–306.
- K. Nakamiya, S. Hashimoto, H. Ito, J.S. Edmonds, M. Morita,
Degradation of 1,4-dioxane and cyclic ethers by an isolated
fungus, Appl. Environ. Microbiol., 71 (2005) 1254–1258.
- S. Mahendra, L. Alvarez-Cohen, Kinetics of 1,4-Dioxane
biodegradation by monooxygenase-expressing bacteria, Environ.
Sci. Technol., 40 (2006) 5435–5442.
- K. Sei, K. Miyagaki, T. Kakinoki, K. Fukugasako, D. Inoue,
M. Ike, Isolation and characterization of bacterial strains that
have high ability to degrade 1,4-dioxane as a sole carbon and
energy source, Biodegradation, 24 (2013) 665–674.
- S.R. Kane, A.Y. Chakicherla, P.S. Chain, R. Schmidt,
M.W. Shin, T.C. Legler, K.M. Scow, F.W. Larimer, S.M. Lucas,
P.M. Richardson, K.R. Hristova, Whole-genome analysis of the
methyl tertiary-butyl ether-degrading beta-proteobacterium
Methylibium petroleiphilum PM1, J. Bacteriol., 189 (2007)
1931–1945.
- B.L. Burback, J.J. Perry, Biodegradation and biotransformation
of groundwater pollutant mixtures by Mycobacterium vaccae,
Appl. Environ. Microbiol., 59 (1993) 1025–1029.
- N. Yamamoto, Y. Saito, D. Inoue, K. Sei, M. Ike, Characterization
of newly isolated Pseudonocardia sp. N23 with high
1,4-dioxanedegrading ability, J. Biosci. Bioeng., 125 (2018)
552–558.
- Ministry of the Environment Government of Japan: Items
Related to the Protection of Human Health. National Effluent
Standards. Ministry of the Environment Government of Japan,
Tokyo, 2012.
- Y. Kimura, K. Isaka, F. Kazama, Tolerance level of dissolved
oxygen to feed into anaerobic ammonium oxidation (anammox)
reactor, J. Water Environ. Technol., 9 (2011) 169–178.
- G. Cema, E. Płaza, J. Trela, J. Surmacz-Górska, Dissolved
oxygen as a factor influencing nitrogen removal rates in a onestage
system with partial nitritation and Anammox process,
Water Sci. Technol., 64 (2011) 1009–1015.
- K. Isaka, M. Udagawa, Y. Kimura, K. Sei, M. Ike, Biological
wastewater treatment of 1,4-dioxane using polyethylene
glycol gel carriers entrapping Afipia sp. D1, J. Biosci. Bioeng.,
121 (2016) 203–208.
- A. Grostern, C.M. Sales, W.Q. Zhuang, O. Erbilgin, L. Alvarez-Cohen, Glyoxylate metabolism is a key feature of the metabolic
degradation of 1,4-dioxane by Pseudonocardia dioxanivorans
strain CB1190, Appl. Environ. Microbiol., 78 (2012) 3298–3308.
- D.Z. Chen, X.J. Jin, J. Chen, J.X. Ye, N.X. Jiang, J.M. Chen,
Intermediates and substrate interaction of 1,4-dioxane
degradation by the effective metabolizer Xanthobacter flavus DT8, Int. Biodeterior. Biodegrad., 106 (2016) 133–140.
- R.J. Steffan, K. McClay, S. Vainberg, C.W. Condee, D. Zhang,
Biodegradation of the gasoline oxygenates methyl tert-butyl
ether, ethyl tert-butyl ether, and tert-amyl methyl ether
by propane-oxidizing bacteria, Appl. Environ. Microbiol.,
63 (1997) 4216–4222.
- E.L. Johnson, C.A. Smith, K.T. O’Reilly, M.R. Hyman,
Induction of methyl tertiary butyl ether (MTBE)-oxidizing
activity in Mycobacterium vaccae JOB5 by MTBE, Appl. Environ.
Microbiol,, 70 (2004) 1023–1030.
- D. Hunkeler, R.U. Meckenstock, B. Sherwood Lollar,
T.C. Schmidt, J.T. Wilson, A Guide for Assessing Biodegradation
and Source Identification of Organic Ground Water Contaminants
Using Compound Specific Isotope Analysis (CSIA), US
Environmental Protection Agency, Ada, Oklahoma, 2008.
- S.H.B. Wang, K.-H. Chu, Biodegradation of 1,4-dioxane: effects
of enzyme inducers and trichloroethylene, Sci. Total Environ.,
520 (2015) 154–159.
- K. Sei, K. Miyagaki, T. Kakinoki, K. Fukugasako, D. Inoue,
M. Ike, Isolation and characterization of bacterial strains that
have high ability to degrade 1,4-dioxane as a sole carbon
and energy source, Biodegradation, 24 (2013) 665–674.
- K. Skinner, L. Cuiffetti, M. Hyman, Metabolism and
cometabolism of cyclic ethers by a filamentous fungus, a
Graphium sp., Appl. Environ. Microbiol., 75 (2009) 5514–5522.
- D.E. Burmaster, The new pollution: groundwater contamination,
Environment, 24 (1982) 22–36.
- K. Nakamiya, S. Hashimoto, H. Ito, J.S. Edmonds, M. Morita,
Degradation of 1,4-dioxane and cyclic ethers by an isolated
fungus, Appl. Environ. Microbiol., 71 (2005) 1254–1258.
- R.L. Ely, K.J. Williamson, M.R. Hyman, D.J. Arp, Cometabolism
of chlorinated solvents by nitrifying bacteria: kinetics,
substrate interactions, toxicity effects, and bacterial response,
Biotechnol. Bioeng., 54 (1997) 520–534.
- B. Sun, K. Ko, J.A. Ramsay, Biodegradation of 1,4-dioxane by a
Flavobacterium, Biodegradation, 22 (2011) 651–659.
- J.D. Young, W.H. Braun, P.J. Gehring, B.S. Horvath, R.L Daniel,
1,4-Dioxane and ß-hydroxyethoxyacetic acid excretion in
urine of humans exposed to dioxane vapors, Toxicol. Appl.
Pharmacol., 38 (1976) 643–646.
- Y.-T. Woo, J.C. Arcos, M.F. Argus, G.W. Griffin, K. Nishiyama,
Metabolism of dioxane: identification of dioxane-2-one as
the major urinary metabolite, Biochem. Pharmacol., 26 (1977)
1535–1538.
- K. Sei, T. Kakinoki, D. Inoue, S. Soda, M. Fujita, M. Ike,
Evaluation of the biodegradation potential of 1,4-dioxane in
river, soil and activated sludge samples, Biodegradation, 21
(2010) 585–591.
- S. Mahendra, C.J. Petzold, E.E. Baidoo, J.D. Keasling,
L. Alvarez-Cohen, Identification of the intermediates of in
vivo oxidation of 1,4- dioxane by monooxygenase-containing
bacteria, Environ. Sci. Technol., 41 (2007) 7330 –7336.
- Y.-M. Kim, J.-R. Jeon, K. Murugesan, E.-J. Kim, Y.-S. Chang,
Biodegradation of 1,4-dioxane and transformation of related
cyclic compounds by a newly isolated Mycobacterium sp.
PH-06, Biodegradation, 20 (2009) 511–519.
- S.-Y.D. Chiang, R. Mora, W.H. Diguiseppi, G. Davis, K. Sublette,
P. Gedalanga, S. Mahendra, Characterizing the intrinsic
bioremediation potential of 1,4-dioxane and trichloroethene
using innovative environmental diagnostic tools, J. Environ.
Monit., 14 (2012) 2317–2326.
- G.J. Zylstra, D.T. Gibson, Toluene degradation by Pseudomonas
putida F1, J. Biol. Chem., 264 (1989) 14940–14946.
- J.O. Sharp, C.M. Sales, J.C. LeBlanc, J. Liu, T.K. Wood,
L.D. Eltis, WW. Mohn, L. Alvarez-Cohan, An inducible propane
monooxygenase is responsible for N-nitrosodimethylamine
degradation by Rhodococcus sp. strain RHA1, Appl. Environ.
Microbiol., 73 (2007) 6930–6938.
- P.B. Gedalanga, P. Pornwongthong, R. Mora, S-Y.D. Chiang,
B. Baldwin, D. Ogles, S. Mahendra, Identification of biomarker
genes to predict biodegradation of 1,4-dioxane, Appl. Environ.
Microbiol., 80 (2014) 3209–3321.