References

  1. T.K.G. Mohr, Environmental Investigation and Remediation: 1,4-Dioxane and Other Solvent Stabilizers, CRC Press, Boca Raton, 2010.
  2. M. Mahmoud, S. Ismail, A. Tawfik, Post-treatment of anaerobic effluent containing 1,4-dioxane and heavy metals via autoaerated down-flow hanging luffa (ADHL) system, Process Saf. Environ. Prot., 17 (2018) 22–32.
  3. S. Yamazaki, N. Yamabe, S. Nagano, A. Fukuda, Adsorption and photocatalytic degradation of 1,4-dioxane on TiO2, J. Photochem. Photobiol., A, 185 (2007) 150–155.
  4. R.E. Jackson, V. Dwarakanath, Chlorinated degreasing solvents: physicalchemical properties affecting aquifer contamination and remediation, Groundwater Monit. Rem., 19 (1999) 102–110.
  5. M.W. Priddle, R.E. Jackson, Laboratory column measurement of VOC retardation factors and comparison with field values, Groundwater, 29 (1991) 260–266.
  6. Environmental Protection Agency, U.S. (US-EPA), Toxicological review of 1,4-dioxane (CAS No. 123–91–1), EPA/635/R-09/005-F, USEPA, Washington, DC, 2010.
  7. Environmental Protection Agency, U.S. (US-EPA), Treatment Technologies for 1,4- Dioxane: Fundamentals and Field Applications, EPA-542-R-06–009, USEPA, Office of Solid Waste and Emergency Response, Washington, D.C., 2006.
  8. M. Mahmoud, A. Elreedy, P. Pascal, Le R. Sophie, A. Tawfik, Hythane (H2 and CH4) production from unsaturated polyester resin wastewater contaminated by 1,4-dioxane and heavy metals via up-flow anaerobic self-separation gases reactor, Energy Convers. Manage., 152 (2017) 342–353.
  9. T.K.G. Mohr, Solvent stabilizers white paper. [Online.] Santa Clara Valley Water District, San Jose, California, 2001. Available at: http://www.valleywater.org/Water/Water_Quality/Protec ting_your_water/_Solvents/_PD Fs/SolventStabilizers.pdf.
  10. R.H. Bowman, P. Miller, M. Purchase, R. Schoellerman, Ozoneperoxide Advanced Oxidation Water Treatment System for Treatment of Chlorinated Solvents and 1,4- dioxane, Proceedings of the American Chemical Society National Meeting, San Diego, April 3, 2001.
  11. C.D. Adams, P.A. Scanlan, N.D. Secrist, Oxidation and biodegradability enhancement of 1,4-dioxane using hydrogen peroxide and ozone, Environ. Sci. Technol., 28 (1994) 1812–1818.
  12. M.M. Odah, R. Powell, D.J. Riddle, ART in-well technology proves effective in treating 1,4-dioxane contamination, Rem. J., 15 (2005) 51–64.
  13. M.I. Stefan, J.R. Bolton, Mechanism of the degradation of 1,4-dioxane in dilute aqueous solutions using the UV/hydrogen peroxide process, Environ. Sci. Technol., 32 (1998) 1588–1595.
  14. B.K. Min, J.E. Heo, N.K. Youn, O.S. Joo, H. Lee, J.H. Kim, H.S. Kim, Tuning of the photocatalytic 1,4-dioxane degradation with surface plasmon resonance of gold nanoparticles on titania, Cat. Comm., 10 (2009) 712–715.
  15. T. Vescovi, H. Coleman, R. Amal, The effect of pH on UV-based advanced oxidation technologies - 1,4-dioxane degradation, J. Hazard. Mater., 182 (2010) 75–79.
  16. W.J. Weber, E.J. Le Boeuf, Process for advanced treatment of water, Water Sci. Technol., 40 (1999) 11–19.
  17. P. Bose, W.H. Glaze, D.S. Maddox, Degradation of various advanced oxidation processes: 1. Reaction rates, Water Res., 32 (1998) 997–1004.
  18. A. Hirvonen, T. Tuhkanen, M. Ettala, S. Korhonen, P. Kalliokoski, Evaluation of a field-scale UV/H2O2 oxidation system for the purification of groundwater contaminated with PCE, Environ. Technol., 19 (1998) 821–828.
  19. S.M. Sock, A Comprehensive Evaluation of Biodegradation as a Treatment Alternative for the Removal of 1,4-Dioxane, MSc thesis, Clemson University, Clemson SC, 1993.
  20. M.J. Zenker, R.C. Borden, M.A. Barlas, Biodegradation of 1,4- dioxane using trickling filter, J. Environ. Eng., 130 (2003) 926–931.
  21. R.E. Parales, J.E. Adamus, N. White, H.D. May, Degradation of 1,4-dioxane by an actinomycete in pure culture, Appl. Environ. Microbiol., 60 (1994) 4527–4230.
  22. B.L. Burback, J.J. Perry, Biodegradation and biotransformation of groundwater pollutant mixtures by Mycobacterium vaccae, Appl. Environ. Microbiol., 59 (1993) 1025–1029.
  23. D. Bernhardt, H. Diekmann, Degradation of dioxane, tetrahydrofuran and other cyclic ethers by an environmental Rhodococcus strain, Appl. Microbiol. Biotechnol., 36 (1991) 120–123.
  24. M.J. Zenker, R.C. Borden, M.A. Barlaz, Mineralization of 1,4-dioxane in the presence of a structural analog, Biodegradation, 11 (2000) 239–246.
  25. S. Vainberg, K. McClay, H. Masuda, D. Root, C.W. Condee, G.J. Zylstra, R.J. Steffan, Biodegradation of ether pollutants by Pseudonocardia sp. strain ENV478, Appl. Environ. Microbiol., 72 (2006) 5218–5224.
  26. S. Mahendra, A. Grostern, L. Alvarez-Cohen, The impact of chlorinated solvent co-contaminants on the biodegradation kinetics of 1,4-dioxane, Chemosphere, 91 (2013) 88–92.
  27. J.S. Han, M.H. So, C.G. Kim, Optimization of biological wastewater treatment conditions for 1,4-dioxane decomposition in polyester manufacturing process, Water Sci. Technol., 59 (2009) 995–1002.
  28. DoD SERDP, Evaluation of branched hydrocarbons as stimulants for in situ cometabolic biodegradation of 1,4-dioxane and its associated co-contaminants, 2013b ER-2303. Avalable at: www.serdp.org/Program-Areas/Environmental-Restoration/Contaminated-Groundwater/Emerging-Issues/ER-2303/ ER-2303.
  29. Y.J. An, E.R. Carraway, PAH degradation by UV/H2O2 in per fluorinated surfactant solutions, Water Res., 36 (2002) 309–314.
  30. H.M. Coleman, V. Vimonses, C. Leslie, R. Amal, Degradation of 1,4-dioxane in water using TiO2 based photocatalytic and H2O2/UV processes, J. Hazard. Mater., 146 (2007) 496–501.
  31. P. Ghosh, A.N. Samanta, S. Ray, Oxidation kinetics of degradation of 1,4-dioxane in aqueous solution by H2O2/Fe(II) system, J. Environ. Sci. Health, Part A, 45 (2010) 395–399.
  32. S. Nakagawa, Y. Kenmochi, K. Tutumi, T. Tanaka, I. Hirasawa, A study on the degradation of endocrine disruptors and dioxins by ozonation and advanced oxidation processes, J. Chem. Eng. Jpn., 35 (2002) 840–847.
  33. M. Pera-Titus, V. Garcia-Molina, M.A. Banos, J. Gimenez, S. Esplugas, Degradation of chlorophenols by means of advanced oxidation processes: a general review, Appl. Catal., B, 47 (2004) 219–256.
  34. S.C. Kwon, J.Y. Kim, S.M. Yoon, W. Bae, K.S. Kang, Y.W. Rhee, Treatment characteristic of 1,4-dioxane by ozone-based advanced oxidation processes, J. Ind. Eng. Chem., 18 (2012) 1951–1955.
  35. M.J. Zenker, R.C. Borden, M.A. Barlaz, Occurrence and treatment of 1, 4- dioxane in aqueous environments, J. Environ. Eng. Sci., 20 (2003) 423–432.
  36. N. Merayo, D. Hermosilla, L. Cortijo, Á. Blanco, Optimization of the Fenton treatment of 1,4-dioxane and on-line FTIR monitoring of the reaction, J. Hazard. Mater., 268 (2014) 102–109.
  37. M.A. Beckett, I. Hua, Enhanced sonochemical decomposition of 1,4-dioxane by ferrous iron, Water Res., 37 (2003) 2372.
  38. J. Carey, J. Lawrence, H. Tosine, Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions, Bull. Environ. Contam. Toxicol., 16 (1976) 697–701.
  39. Y. Ohko, D.A. Tryk, K. Hashimoto, A. Fujishima, Autoxidation of acetaldehyde initiated by TiO2 photocatalysis under weak UV illumination, J. Phys. Chem. B, 102 (1998) 2699–2704.
  40. A. Fujishima, X. Zhang, D. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep., 63 (2008) 515–582.
  41. H.S. Son, J.K. Im, K.D. Zoh. A, Fenton-like degradation mechanism for 1,4-dioxane using zero-valent iron (Fe0) and UV light, Water Res., 43 (2009) 1457–1463.
  42. H. Barndõk, L. Cortijo, D. Hermosilla, C. Negro, Á. Blanco, Removal of 1,4-dioxane from industrial wastewaters: routes of decomposition under different operational conditions to determine the ozone oxidation capacity, J. Hazard. Mater., 280 (2014) 340–347.
  43. H. Barndõk, N. Merayo, L. Blanco, D. Hermosilla, Á. Blanco, Application of on-line FTIR methodology to study the mechanisms of heterogeneous advanced oxidation processes, Appl. Catal., B, 185 (2016) 344–352.
  44. H. Barndõk, D. Hermosilla, C. Han, D. Dionysiou, C. Negro, Á. Blanco, Degradation of 1,4-dioxane from industrial wastewater by solar photocatalysis using immobilized NF-TiO2 composite with monodisperse TiO2 nanoparticles, Appl. Catal., B, 180 (2016) 44–52.
  45. J.R. Alvarez-Corena, J.A. Bergendahl, F.L. Hart, Advanced oxidation of five contaminants in water by UV/TiO2: reaction kinetics and byproducts identification, J. Environ. Manage., 181 (2016) 544–551.
  46. R.R. Hill, G.E. Jeffs, D.R. Roberts, Photocatalytic degradation of 1,4-dioxane in aqueous solution, J. Photochem. Photobiol. A, 108 (1997) 55–58.
  47. B.K. Min, J.E. Heo, N.K. Youn, O.S. Joo, H. Lee, J.H. Kim, H.S. Kim, Tuning of the photocatalytic 1,4-dioxane degradation with surface plasm on resonance of gold nanoparticles on titania, Catal. Commun., 10 (2009) 712–715.
  48. A. Nakajima, S. Matsui, S. Yanagida, Y. Kameshima, K. Okada, Preparation and properties of titania-Cs2.5H0.5P12O40 hybrid films, Surf. Coat. Technol., 203 (2009) 1133–1137.
  49. R.P. Schwarzenbach, P.M. Gschwend, D.M. Imboden, Sorption, Solid-Aqueous Solution Exchange, in Environmental Organic Chemistry, John Wiley & Sons Inc., New York, 1993.
  50. C.E. Wayne, R.P. Wayne, Determination of Chloramphenicol in Tablets by Electrogenerated Chemiluminescence, In Photochemistry, Oxford University Press Inc., New York, 2002.
  51. A.J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solutions, International Union of Pure and Applied Chemistry, Marcel Dekker Inc., New York, 1985.
  52. W.H. Glaze, J.W. Kang, D.H. Chapin, The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation, Ozone Sci. Eng., 9 (1987) 335–352.
  53. G. Bertanza, M. Papa, R. Pedrazzani, C. Repice, G. Mazzoleni, N. Steimberg, D. Feretti, E. Ceretti, I. Zerbini, EDCs, estrogenicity and genotoxicity reduction in a mixed (domestic + textile) secondary effluent by means of ozonation: a full-scale experience, Sci. Total Environ., 458–460 (2013) 160–168.
  54. A.M. Deegan, B. Shaik, K. Nolan, K. Urell, M. Oelgemoeller, J. Tobin, A. Morrissey, Treatment options for wastewater effluents from pharmaceutical companies, Int. J. Environ. Sci. Technol., 8 (2011) 649–666.
  55. T.A. Larsen, J. Lienert, A. Joss, H. Siegrist, How to avoid pharmaceuticals in the aquatic environment, J. Biotechnol., 113 (2004) 295–304.
  56. I. Oller, S. Malato, J.A. Sanchez-Perez, Combination of advanced oxidation processes and biological treatments for wastewater decontamination - a review, Sci. Total Environ., 409 (2011) 4141–4166.
  57. J.H. Suh, M. Mohseni, A study on the relationship between biodegradability enhancement and oxidation of 1,4-dioxane using ozone and hydrogen peroxide, Water Res., 38 (2004) 2596–2604.
  58. J.L. Acero, S.B. Haderlein, T.C. Schmidt, M.J.F. Suter, U. Von Gunten, MTBE oxidation by conventional ozonation and the combination ozone/hydrogen peroxide: efficiency of the processes and bromate formation, Environ. Sci. Technol., 35 (2001) 4252–4259.
  59. F. Beltran, B. Acedo, J. Rivas, Use of ozone to remove alachlor from surface water, Bull. Environ. Contam. Toxicol., 62 (1999) 324–329.
  60. K. Ikehata, M.G. El-Din, Aqueous pesticide degradation by ozonation and ozone based advanced oxidation processes: a review (Part I), Ozone Sci. Eng., 27 (2005) 83–114.
  61. K. Ikehata, M.G. El-Din, Aqueous pesticide degradation by ozonation and ozone based advanced oxidation processes: a review (Part II), Ozone Sci. Eng., 27 (2005) 173–202.
  62. J. Hoigne, H. Bader, The role of hydroxyl radical reactions in ozonation processes in aqueous, Water Res., 10 (1976) 377–386.
  63. J. Hoigne, H. Bader, Rate constants of reactions of ozone with organic and inorganic compounds in water II, Water Res., 17 (1983) 11.
  64. A.B. Ross, Selected Specific Rates of Reactions of Transients from Water in Aqueous Solution: III. Hydroxyl Radical and Perhydroxyl Radical and Their Radical Ions, U.S. Department of Commerce, National Bureau of Standards, Washington, 1977.
  65. L. Bijan, M. Mohseni, Integrated ozone and biotreatment of pulp mill effluent and changes in biodegradability and molecular weight distribution of organic compounds, Water Res., 39 (2005) 3763–3772.
  66. K. Kosaka, H. Yamada, S. Matsui, K. Shishida, The effects of the co-existing compounds on the decomposition of micropollutants using the ozone/hydrogen peroxide process, Water Sci. Technol., 42 (2000) 353–361.
  67. J.H. Suh, D.J. Kang, J. Do Park, H.S. Lee, A Study on the Catalytic Ozonation of 1,4-Dioxane, Proc. 9th Russian-Korean International Symposium on Science and Technology KORUS´2005, 2005, pp. 169–171.
  68. V. Maurino, P. Calza, C. Minero, E. Pelizzetti, M. Vincenti, Lightassisted 1,4- dioxane degradation, Chemosphere, 35 (1997) 2675–2688.
  69. E. Evgenidou, K. Fytianos, I. Poulios, Photocatalytic oxidation of dimethoate in aqueous solutions, J. Photochem. Photobiol., A, 175 (2005) 29–38.
  70. J. Prousek, Advanced oxidation processes for water treatment. Photochemical processes, Chem. Listy, 90 (1996) 307–315.
  71. S. Malato, J. Blanco, M.I. Maldonado, P. Fernandez-Ibanez, A. Campos, Optimizing solar photocatalytic mineralization of pesticides by adding inorganic oxidizing species; application to the recycling of pesticide containers, Appl. Catal., B, 28 (2000) 163–174.
  72. M.S. Tsao, W.K. Wilmarth, The aqueous chemistry of inorganic free radicals. I. The mechanism of the photolytic decomposition of aqueous persulfate ion and evidence regarding the sulfatehydroxyl radical interconversion equilibrium, J. Phys. Chem., 63 (1959) 346–352.
  73. M. Dor, Chimie des Oxydants au Traitment des Eaux., Lavoisier, Paris, 1989, p. 296.
  74. K.H. Choo, D.I. Chang, K.W. Park, M.H. Kim, Use of an integrated photocatalysis/hollow fiber microfiltration system for the removal of trichloroethylene in water, J. Hazard. Mater., 152 (2008) 183–190.
  75. H. Barndok, Advanced Oxidation Processes for the Treatment of Industrial Wastewaters Containing 1,4-Dioxane, Ph.D. Thesis, UNIVERSIDAD COMPLUTENSE DE MADRID, FACULTAD DE CIENCIAS QUÍMICAS, Departamento de Ingeniería Química, Spain, 2016.
  76. M.S. Lucas, J.A. Peres, G.L. Puma, Treatment of winery wastewater by ozone-based advanced oxidation processes (O3, O3/UV and O3/UV/H2O2) in a pilot-scale bubble column reactor and process economics, Sep. Purif. Technol., 72 (2010) 235.
  77. N. Azbar, T. Yonar, K. Kestioglu, Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent, Chemosphere, 55 (2004) 35.
  78. R.G. Parag, Treatment of wastewater streams containing phenolic compounds using hybrid techniques based on cavitation: a review of the current status and the way forward, Ultrason. Sonochem., 15 (2008) 1–15.
  79. I.A. Balcioglu, M. Otker, Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes, Chemosphere, 50 (2003) 85.
  80. S. Esplugas, J. Gimenez, S. Contreras, E. Pascual, M. Rodriquez, Comparison of different advanced oxidation processes for phenol degradation, Water Res., 36 (2002) 1034.
  81. T.O. Kwon, B.B. Park, I.S. Moon, advanced oxidation process for the treatment of terephthalic acid wastewater using UV, H2O2 and O3: organic and color removal studies, Korean Chem. Eng. Res., 45 (2007) 648.
  82. R.G. Ball, Soil and Water Remediation Method and Apparatus, US Patent No. 7,667,087,” 7,667,087 B2, 2010.
  83. SERDP (Strategic Environmental Research and Development Program), In Situ Chemical Oxidation for Groundwater Remediation, Vol. 3. Springer, New York, NY, 2011,
  84. R.G. Ball, Chemical Oxidation Method and Compounds US, Patent No. 8,049,056,” 8,049,056 B2, 2011.
  85. S.G. Huling, B.E. Pivetz, In-situ Chemical Oxidation. U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 2006.
  86. A. Tsitonaki, B. Petri, M. Crimi, H. Mosbæk, R.L. Siegrist, P.L. Bjerg, In situ chemical oxidation of contaminated soil and groundwater using persulfate, a review, Crit. Rev. Environ. Sci. Technol., 40 (2008) 55–91.
  87. P.A. Block, R.A. Brown, D. Robinson, Novel activation technologies for sodium persulfate in situ chemical oxidation. In: Proc. Fourth International Conference on the Remediation of Chlorinated and Recalcitrant Compound, pp. 1–8, Vol. 2004, Paper 2A-0.
  88. E.S. FMC, In-situ Chemical Oxidation with KlozurTM Activated Persulfate: Comingled Plume of Chlorinated Solvents and 1,4 Dioxane. FMC Environmental Solutions, 2007.
  89. G. Cronk, Case Study: Comparison of Multiple Activation Methods for Sodium Persulfate Isco Treatment, In: Proc. Sixth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, 2008.
  90. M.D. Paul, A.W. Barbara, K.M. Kelly, B. James, Fast-track Remedial Design of Full-scale ISCO Application Using Pilot Scale Testing and Field Screening Parameters, Proc. Annual International Conference on Soils, Sediments, Water and Energy, Vol. 15, 2010.
  91. D. Eberle, R. Ball, T.B. Boving, Peroxone activated persulfate treatment of 1,4-dioxane in the presence of chlorinated solvent co-contaminants, Chemosphere, 144 (2016) 728–735.
  92. F. Harber, J.J. Weiss, The catalytic decomposition of hydrogen peroxide by iron salts, J. Am. Chem. Soc., 45 (1934) 338–351.
  93. J.J. Pignatello, E. Oliveros, A. MacKay, Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry, Crit. Rev. Environ. Sci. Technol., 36 (2006) 1–84.
  94. D. Hermosilla, M. Cortijo, C.P. Huang, The role of iron on the degradation and mineralization of organic compounds using conventional Fenton and photo- Fenton processes, Chem. Eng. J., 155 (2009) 637–646.
  95. R.F.F. Pontes, J.E.F. Moraes, A. Machulek Jr., J.M. Pinto, A mechanistic kinetic model for phenol degradation by the Fenton process, J. Hazard. Mater., 176 (2010) 402–413.
  96. J. Kiwi, C. Pulgarin, P. Peringer, M. Gratzel, Beneficialeffects of homogeneous photo-Fenton pretreatment upon the biodegradation of anthraquinone sulfonate in waste-water treatment, Appl. Catal., B, 3 (1993) 85–99.
  97. C. Pulgarin, J. Kiwi, Overview on photocatalytic and electrocatalytic pretreatment of industrial non-biodegradable pollutants and pesticides, Chimia, 50 (1996) 50–55.
  98. H.S. Kim, B.H. Kwon, S.J. Yoa, I.K. Kim, Degradation of 1,4-dioxane by photo-Fenton processes, J. Chem. Eng. Jpn., 41 (2008) 829–835.
  99. E. Khan, W. Wirojanagud, N. Sermsai, Effects of iron type in Fenton reaction on mineralization and biodegradability enhancement of hazardous organic compounds, J. Hazard. Mater., 161 (2009) 1024–1034.
  100. E. De Torres-Socias, I. Fernandez-Calderero, I. Oller, M.J. Trinidad-Lozano, F.J. Yuste, S. Malato, Cork boiling wastewater treatment at pilot plant scale: comparison of solar photo- Fenton and ozone (O3, O3/H2O2). Toxicity and biodegradability assessment, Chem. Eng. J., 234 (2013) 232–239.
  101. C. Mendoza-Marin, P. Osorio, N. Benitez, Decontamination of industrial wastewater from sugarcane crops by combining solar photo-Fenton and biological treatments, J. Hazard. Mater., 177 (2010) 851–855.
  102. I. Oller, S. Malato, J.A. Sanchez-Perez, M.I. Maldonado, W. Gernjak, L.A. Perez-Estrada, J.A. Munoz, C. Ramos, C. Pulgarin, Pre-industrial-scale combined solar photo-fenton and immobilized biomass activated-sludge biotreatment, Ind. Eng. Chem. Res., 46 (2007) 7467–7475.
  103. T.F.C.V. Silva, A. Fonseca, I. Saraiva, V.J.P. Vilar, R.A.R. Boaventura, Biodegradability enhancement of a leachate after biological lagooning using a solar driven photo-Fenton reaction, and further combination with an activated sludge biological process, at pre-industrial scale, Water Res., 47 (2013) 3543–3557.
  104. P.A. Soares, T.F.C.V. Silva, D.R. Manenti, S.M.A.G.U. Souza, R.A.R. Boaventura, V.J.P. Vilar, Insights into real cotton-textile dyeing wastewater treatment using solar advanced oxidation processes, Environ. Sci. Pollut. Res., 21 (2014) 932–945.
  105. B.S. Souza, F.C. Moreira, M.W.C. Dezotti, V.J.P. Vilar, R.A.R. Boaventura, Application of biological oxidation and solar driven advanced oxidation processes to remediation of winery wastewater, Catal. Today, 209 (2013) 201–208.
  106. V. Ragaini, E. Selli, C. Letizia, B.C. Pirola, Sono-photocatalytic degradation of 2-chlorophenol in water: kinetic and energetic comparison with other techniques, Ultrason. Sonochem., 8 (2001) 251–258.
  107. I.Z. Shirgaonkar, A.B. Pandi, Sonophotochemical destruction of aqueous solution of 2,4,6-trichlorophenol, Ultrason. Sonochem., 5 (1998) 53–61.
  108. Y. Kado, M. Atobe, T. Nonaka, Ultrasonic effects on electro organic processes ± Part 20. Photocatalytic oxidation of aliphatic alcohols in aqueous suspension of TiO2 powder, Ultrason. Sonochem., 8 (2001) 69–74.
  109. G.M. Klecˇka, S.J. Gonsior, Removal of 1,4-dioxane from wastewater, J. Hazard. Mater., 13 (1986) 161–168.
  110. S. Chitra, K. Paramasivan, M. Cheralathan, P.K. Sinha, Degradation of 1,4-dioxane using advanced oxidation processes, Environ. Sci. Pollut. Res., 19 (2012) 871–878.
  111. J. Maekawa, K. Mae, H. Nakagawa, Degradation of 1,4-dioxane by the ferrioxalate-mediated photo-Fenton process using UV or white LED irradiation, J. Chem. Eng. Jpn., 49 (2016) 305–311.
  112. E. Brillas, I. Sires, M.A. Oturan, Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry, Chem. Rev., 109 (2009) 6570–6631.
  113. O. Ganzenko, D. Huguenot, E.D. van Hullebusch, G. Esposito, M.A. Oturan, Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches, Environ. Sci. Pollut. Res., 21 (2014) 8493–8524.
  114. P.V. Nidheesh, R. Gandhimathi, Trends in electro-Fenton process for water and wastewater treatment: an overview, Desalination, 299 (2012) 1–15.
  115. J. Antoni, M.C. Liu, P. Chewpreecha, Kinetics of aniline degradation by Fenton and electro-Fenton processes, Water Res., 40 (2006) 1841–1847.
  116. Y.H. Huang, Y.F. Huang, P.S. Chang, C.Y. Chen, Comparative study of oxidation of dye-Reactive Black B by different advanced oxidation processes: Fenton, electro-Fenton and photo-Fenton, J. Hazard. Mater., 154 (2008) 655–662.
  117. H. Nakagawa, S. Takagi, J. Maekawa, Fered-Fenton process for the degradation of 1,4-dioxane with an activated carbon electrode: a kinetic model including active radicals, Chem. Eng. J., 296 (2016) 398–405.
  118. R. Mantha, K.E. Taylor, N. Biswas, J.K. Bewtra, A continuous system for Fe0 reduction of nitrobenzene in synthetic wastewater, Environ. Sci. Technol., 35 (2001) 3231–3236.
  119. J.K. Moor, S.C Doney, D.M. Glover, I.Y. Fung, Iron cycling and nutrient-limitation patterns in surface waters of world ocean, Deep-Sea Res. II, 49 (2002) 493–507.
  120. W. Arnold, A.L. Roberts, Pathway and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe0 particles, Environ. Sci. Technol., 34 (2000) 1794–1805.
  121. W.F. Wust, R. Kober, O. Schlicker, A. Dahmke, Combined zeroand first-order kinetic model of the degradation TCE and cis-DCE with commercial iron, Environ. Sci. Technol., 33 (1999) 4304–4309.
  122. B.H.J. Bielski, D.E. Cabelli, R.L. Arudi, A.B. Ross, Reactivity of OH2/O2 radicals in aqueous solution, J. Phys. Chem. Ref. Data, 14 (1985) 1041–1100.
  123. M. Balmer, B. Sulzberger, Atrazine degradation in irradiated iron/oxalate systems: effect of pH and oxalate, Environ. Sci. Technol., 33 (1999) 2148–2424.
  124. J.S. Jeong, J.Y. Joon, pH effect on OH radical production in photo/ferrioxalate system, Water Res., 39 (2005) 2893–2900.
  125. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69.
  126. D.M. Blake, Bibliography of Work on the Heterogeneous Photocatalytic Removal of Hazardous Compounds from Water and Air, National Renewable Energy Laboratory, Golden, CO, 2000.
  127. A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol., C, 1 (2000) 1.
  128. A. Nakajima, M. Tanaka, Y. Kameshima, K. Okada, Sonophotocatalytic destruction of 1,4-dioxane in aqueous systems by HF-treated TiO2 powder, J. Photochem. Photobiol. A, 167 (2004) 75.
  129. M. Mehrvar, W.A. Anderson, M. Moo-Young, Comparison of the photoactivities of two commercial titanium dioxide powders in the degradation of 1,4-dioxane, Int. J. Photoenergy, 4 (2002) 141–146.
  130. A. Mills, S. LeHunte, An overview of semiconductor photocatalysis, J. Photochem. Photobiol. A, 108 (1997) 1.
  131. S. Yamazaki, T. Tanimura, A. Yoshida, K. Hori, Reaction mechanism of photocatalytic degradation of chlorinated ethylenes on porous TiO2 pellets: Cl radical-initiated mechanism, J. Phys. Chem. A, 108 (2004) 5183.
  132. L.L. Costa Alexandre G.S. Prado, TiO2 nanotubes as recyclable catalyst for efficient photocatalytic degradation of indigo carmine dye, J. Photochem. Photobiol. A, 201 (2009) 45–49.
  133. S. Padikkaparambil, B. Narayanan, Z. Yaakob, S. Viswanathan, S.M. Tasirin, Au/TiO2 Reusable photocatalysts for dye degradation, Int. J. Photoenergy, (2013) 1–10, Article ID 752605.
  134. Y. Xie, C. Yuan, X. Li, Photosensitized and photocatalyzed degradation of azo dye using Lnn+-TiO2 sol in aqueous solution under visible light irradiation, Mater. Sci. Eng. B, 117 (2005) 325–333.
  135. D. Beydoun, R. Amal, G.K.C. Low, S. McEvoy, Novel photocatalyst: titania-coated magnetite. Activity and photodissolution, J. Phys. Chem. B, 104 (2000) 4387–4396.
  136. C. Han, R. Luque, D.D. Dionysiou, Facile preparation of controllable size monodisperse anatase titania nanoparticles, Chem. Commun., 48 (2012) 1860–1862.
  137. N. Miranda-Garcia, S. Suarez, B. Sanchez, J.M. Coronado, S. Malato, M. Ignacio Maldonado, Photocatalytic degradation of emerging contaminants in municipal wastewater treatment plant effluents using immobilized TiO2 in a solar pilot plant, Appl. Catal., B, 103 (2011) 294–301.
  138. M. Pelaez, P. Falaras, V. Likodimos, A.G. Kontos, A.A. de la Cruz, K. O’Shea, D.D. Dionysiou, Synthesis, structural characterization and evaluation of sol–gel-based NF-TiO2 films with visible light-photoactivation for the removal of microcystin-LR, Appl. Catal., B, 99 (2010) 378–387.
  139. C.D. Vecitis, T. Lesko, A.J. Colussi, M.R. Hoffmann, Sonolytic decomposition of aqueous bioxalate in the presence of ozone, J. Phys. Chem. A, 114 (2010) 4968–4980.
  140. K. Lekkerkerker-Teunissen, A.H. Knol, L.P. van Altena, C.J. Houtman, J. Verberk, J.C. van Dijk, Serial ozone/peroxide/low pressure UV treatment for synergistic and effective organic micropollutant conversion, Sep. Purif. Technol., 100 (2012) 22–29.
  141. G.G. Bessegato, J.C. Cardoso, B.F. da Silva, M.V.B. Zanoni, Combination of photoelectrocatalysis and ozonation: a novel and powerful approach applied in Acid Yellow 1 mineralization, Appl. Catal., B, 180 (2016) 161–168.
  142. N. Kishimoto, Y. Yasuda, H. Mizutani, Y. Ono, Applicability of ozonation combined with electrolysis to 1,4-dioxane removal from wastewater containing radical scavengers, Ozone-Sci. Eng., 29 (2007) 13–22.
  143. J.P. Pocostales, M.M. Sein, W. Knolle, C. von Sonntag, T.C. Schmidt, Degradation of Ozone-refractory organic phosphates in wastewater by ozone and ozone/ hydrogen peroxide (peroxone): the role of ozone consumption by dissolved organic matter, Environ. Sci. Technol., 44 (2010) 8248–8253.
  144. H. Wang, B. Bakheet, S. Yuan, X. Li, G. Yu, S. Murayama, Y. Wang, Kinetics and energy efficiency for the degradation of 1,4-dioxane by electro-peroxone process, J. Hazard. Mater., 294 (2015) 90–98.
  145. P. Frangos, H.J. Wang, W.H. Shen, G. Yu, S.B. Deng, J. Huang, B. Wang, Y.J. Wang, A novel photoelectro-peroxone process for the degradation and mineralization of substituted benzenes in water, Chem. Eng. J., 286 (2016) 239–248.
  146. C. von Sonntag, U. von Gunten, Chemistry of Ozone in Water and Wastewater Treatment. From basic Principles to Applications, IWA Publishing, 2012.
  147. O. Legrini, E. Oliveros, A.M. Braun, Photochemical processes for water treatment, Chem. Rev., 93 (1993) 671–698.
  148. W. Shen, Y. Wang, J. Zhan, B. Wang, J. Huang, S. Deng, G. Yu, Kinetics and operational parameters for 1,4-dioxane degradation by the photoelectro-peroxone process, Chem. Eng. J., 310 (2017) 249–258.
  149. K.-C. Lee, K.-H. Choo, Hybridization of TiO2 photocatalysis with coagulation and flocculation for 1,4-dioxane removal in drinking water treatment, Chem. Eng. J., 231 (2013) 227–235.
  150. S.S. Chin, K. Chiang, A.G. Fane, The stability of polymeric membranes in a TiO2 photocatalysis process, J. Membr. Sci., 275 (2006) 202–211.
  151. R. Molinari, M. Borgese, E. Drioli, L. Palmisano, M. Schiavello, Hybrid processes coupling photocatalysis and membranes for degradation of organic pollutants in water, Catal. Today, 75 (2002) 77–85.
  152. G. Balasubramanian, D.D. Dionysiou, M.T. Suidan, I. Baudin, J.M. Laîne, Evaluating the activities of immobilized TiO2 powder films for the photocatalytic degradation of organic contaminants in water, Appl. Catal., B. 47 (2004) 73–84.
  153. J. Fu, M. Ji, Z. Wang, L. Jin, D. An, A new submerged membrane photocatalysis reactor (SMPR) for fulvic acid removal using a nano-structured photocatalyst, J. Hazard. Mater., 131 (2006) 238–242.
  154. S. Mozia, Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. a review, Sep. Purif. Technol., 73 (2010) 71–91.
  155. V.C. Sarasidis, S.I. Patsios, A.J. Karabelas, A hybrid photocatalysis- ultrafiltration continuous process: the case of polysaccharide degradation, Sep. Purif. Technol., 80 (2011) 73–80.
  156. K.-H. Choo, R. Tao, M.-J. Kim, Use of a photocatalytic membrane reactor for the removal of natural organic matter in water: effect of photoinduced desorption and ferrihydrite adsorption, J. Membr. Sci., 322 (2008) 368–374.
  157. P. Wang, A.G. Fane, T.T. Lim, Evaluation of a submerged membrane vis-LED photoreactor (sMPR) for carbamazepine degradation and TiO2 separation, Chem. Eng. J., 215–216 (2013) 240–251.
  158. S.-A. Lee, K.-H. Choo, C.-H. Lee, H.-I. Lee, T. Hyeon, W. Choi, H.-H. Kwon, Use of ultrafiltration membranes for the separation of TiO2 photocatalysts in drinking water treatment, Ind. Eng. Chem. Res., 40 (2001) 1712–1719.
  159. R. Goei, Z. Dong, T.-T. Lim, High-permeability pluronicbased TiO2 hybrid photocatalytic membrane with hierarchical porosity: fabrication, characterizations and performances, Chem. Eng. J., 228 (2013) 1030–1039.
  160. R. Goei, T.-T. Lim, Ag-decorated TiO2 photocatalytic membrane with hierarchical architecture: photocatalytic and anti-bacterial activities, Water Res., 59 (2014) 207–218.
  161. S.K. Papageorgiou, F.K. Katsaros, E.P. Favvas, G.E. Romanos, C.P. Athanasekou, K.G. Beltsios, O.I. Tzialla, P. Falaras, Alginate fibers as photocatalyst immobilizing agents applied in hybrid photocatalytic/ultrafiltration water treatment processes, Water Res., 46 (2012) 1858–1872.
  162. A.D. Syafei, C.-F. Lin, C.-H. Wu, Removal of natural organic matter by ultrafiltration with TiO2-coated membrane under UV irradiation, J. Colloid Interface Sci., 323 (2008) 112–119.
  163. T.-T. Lim, P.-S. Yap, M. Srinivasan, A.G. Fane, TiO2/AC composites for synergistic adsorption-photocatalysis processes: present challenges and further developments for water treatment and reclamation, Crit. Rev. Environ. Sci. Technol., 41 (2011) 1173–1230.
  164. S. Mozia, M. Tomaszewska, A.W. Morawski, A new photocatalytic membrane reactor (PMR) for removal of azo-dye Acid Red 18 from water, Appl. Catal., B, 59 (2005) 131–137.
  165. S. Mozia, M. Tomaszewska, A.W. Morawski, Removal of azodye Acid Red 18 in two hybrid membrane systems employing a photodegradation process, Desalination, 198 (2006) 183–190.
  166. K.-C. Lee, H.-J. Beak, K.-H. Choo, Membrane photoreactor treatment of 1,4-dioxane-containing textile wastewater effluent: performance, modeling, and fouling control, Water Res., 86 (2015) 58–65.
  167. R. Gómez, T.L, ó pez, E. Ortiz-Islas, J. Navarrete, E. Sánchez, F. Tzompanztzi, X. Bokhimi, Effect of sulfation on the photoactivity of TiO2 sol–gel derived catalysts, J. Mol. Catal., A Chem., 193 (2003) 217.
  168. X. Wang, J.C. Yu, Y. Hou, X. Fu, Three-dimensionally ordered mesoporous molecular-sieve films as solid superacid photocatalysts, Adv. Mater., 17 (2005) 99.
  169. G. Col ó n, M.C. Hoidalgo, G. Munuera, I. Ferino, M.G. Cutrufello, J.A. Navío, Cu-doped TiO2 systems with improved photocatalytic activity, Appl. Catal., B, 63 (2006) 45.
  170. R.-D. Sun, T. Nishikawa, A. Nakajima, T. Watanabe, K. Hashimoto, TiO2/polymer composite materials with reduced generation of toxic chemicals during and after combustion—effect of HF-treated TiO2, Polym. Degrad. Stab., 78 (2002) 479–484.
  171. S. Suzaki, T. Okazaki, Effect of surface fluorination on solid acidity and catalytic activity of TiO2 and TiO2-SiO2, J. Chem. Soc. Jpn., 84 (1981) 330–335 (in Japanese).
  172. J.M. Pettibone, D.M. Cwiertny, M. Scherer, V.H. Grassian, Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation. Langmuir, 24 (2008) 6659–6667.
  173. V.K. Sharma, N.J.D. Graham, X.-Z. Li, B.-L. Yuan, Ferrate (VI) enhanced photocatalytic oxidation of pollutants in aqueous TiO2 suspensions, Environ. Sci. Pollut. Res., 17 (2010) 453–461.
  174. M. Mehrvar, W.A. Anderson, M. Moo-Young, Photocatalytic degradation of aqueous tetrahydrofuran, 1,4-dioxane, and their mixture with TiO2, Int. J. Photoenergy, 2 (2000) 67–80.
  175. P. Ettireddy, G. Reddy, G. Smirniotis, Sonophotocatalytic destruction of organic contaminantsin aqueous systems on TiO2 powders, Appl. Catal., B, 32 (2001) 95–105.
  176. S. Sakthivel, N. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan, Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2, Sol. Energy Mater. Sol. Cells, 77 (2004) 65–82.
  177. R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Advanced oxidation processes (AOP) for water purification and recovery, Catal. Today, 53 (1999) 51–59.
  178. M. Mehrvar, W.A. Anderson, M. Moo-Young, Photocatalytic degradation of aqueous organic solvents in the presence of hydroxyl radical scavengers, Int. J. Photoenergy, 3 (2001) 187–191.
  179. C.D. Adams, P.A. Scanlan, N.D. Secrist, Oxidation and biodegradability enhance-ment of 1,4-dioxane using hydrogen peroxide and ozone, Environ. Sci. Technol., 28 (1994) 1812–1818.
  180. W.H. Glaze, Reaction products of ozone – a review, Environ. Health Persp., 69 (1986) 151–157.
  181. J. Staehelin, J. Hoigne, Decomposition of ozone in water – rate of initiation by hydroxide ions and hydrogen-peroxide, Environ. Sci. Technol., 16 (1982) 676–681.
  182. A. Fischbacher, J. von Sonntag, C. von Sonntag, T.C. Schmidt, The OH radical yield in the H2O2 + O3(peroxone) reaction, Environ. Sci. Technol., 47 (2013) 9959–9964.
  183. M.M. Sein, A. Golloch, T.C. Schmidt, C. von Sonntag, No marked kinetic isotope effect in the peroxone (H2O2/D2O2 + O3) reaction: mechanistic consequences, Chemphyschem, 8 (2007) 2065–2067.
  184. S.W. Lam, M. Hermawan, H.M. Coleman, K. Fisher, R. Amal, The role of copper(II) ions in the photocatalytic oxidation of 1,4-dioxane, J. Mol. Catal. A, 278 (2007) 152–159.
  185. H.S. Son, S.B. Choi, E. Khan, K.D. Zoh, Removal of 1,4-dioxane from water using sonication: effect of adding oxidants on the degradation kinetics, Water Res., 40 (2006) 692.
  186. R.J. Brandi, C.A. Martín, O.M. Alfano, A.E. Cassano, A laboratory reactor for photocatalytic studies in slurry operation, J. Adv. Oxid. Technol., 5 (2002) 175–185.
  187. C.N. Chang, Y.S. Ma, G.C. Fang, A.C. Chao, M.C. Tsai, H.F. Sung, Decolorizing of lignin wastewater using the photochemical UV/TiO2 process, Chemosphere. 56 (2004) 1011–1017.
  188. N. Merayo, D. Hermosilla, L. Blanco, L. Cortijo, A. Blanco, Assessing the application of advanced oxidation processes, and their combination with biological treatment, to effluents from pulp and paper industry, J. Hazard. Mater., 262 (2013) 420–427.
  189. M.F. Kabir, E. Vaisman, C.H. Landford, A. Kantzas, Effects of hydrogen peroxide in a fluidized bed photocatalytic reactor for wastewater purification, Chem. Eng. J., 118 (2006) 207–212.
  190. I. Poulios, E. Micropoulou, R. Panou, E. Kostopoulou, Photooxidation of eosinYin the presence of semiconducting oxides, Appl. Catal., B, 41 (2003) 345–355.
  191. A.E.H. Machado, J.A. de Miranda, R.F. de Freitas, E.T.F.M. Duarte, L.F. Ferreira, Y.D.T. Albuquerque, R. Ruggeiro, C. Sattler, L. de Oliveria, Destruction of the organic matter present in effluent from a cellulose and paper industry using photocatalysis, J. Photochem. Photobiol., A, 155 (2003) 231–241.
  192. H.D. Chun, J.K. Park, Photocatalytic oxidation of chlorinated organic compounds over TiO2 membrane coated on glass tube, J. Hazard. Mater., 11 (1994) 501–510.
  193. R. Dillert, I. Fornefett, U. Siebers, D. Bahnemann, Photocatalytic degradation of trinitrotoluene and trinitrobenzene: influence of hydrogen peroxide, J. Photochem. Photobiol., A, 94 (1996) 231–236.
  194. Y.J. Hong, Preparation and Characterization of Sol–Gel Derived Peroxo Titania and Its Application for Nano-Crystalline Dye Sensitized Solar Cell, Ph.D. thesis, University of New South Wales, Sydney, Australia, 2002.
  195. H. Yang, K. Zhang, R. Shi, X. Li, X. Dong, Y. Yu, Sol–gel synthesis of TiO2 nanoparticles and photocatalytic degradation of methyl orange in aqueous TiO2 suspensions, J. Alloys Compd., 413 (2006) 302–306.
  196. F. Haque, E. Vaisman, C.H. Langford, A. Kantzas, Preparation and performance of integrated photocatalyst adsorbent (IPCA) employed to degrade model organic compounds in synthetic wastewater, J. Photochem. Photobiol., A, 169 (2005) 21–27.
  197. K. Huang, R.A. Couttenye, G.E. Hoag, Kinetics of Heatassisted Persulfate Oxidation of Methyl Tert-butyl Ether (MTBE), 49 (2002) 413–420.
  198. C. Liang, Z.S. Wang, C.J. Bruell, Influence of pH on persulfate oxidation of TCE at ambient temperatures, Chemosphere, 66 (2007) 106–113.
  199. S. Yanagida, A. Nakajima, Y. Kameshima, K. Okada, Effect of applying voltage on photocatalytic destruction of 1,4-dioxane in aqueous system, Catal. Commun., 7 (2006) 1042–1046.
  200. A. Tsuchida, T. Shimamura, S. Sawada, S. Sato, N. Serpone, S. Horikoshi, In-liquid Plasma. a stable light source for advanced oxidation processes in environmental remediation, Rad. Phys. Chem., 147 (2018) 53–58.
  201. C. Tang, V. Chen, The photocatalytic degradation of reactive black 5 using TiO2/UV in an annular photoreactor, Water Res., 38 (2004) 2775–2781.
  202. P. Yao, K.H. Choo, M.H. Kim, A hybridized photocatalysis–microfiltration system with iron oxide-coated membranes for the removal of natural organic matter in water treatment: effects of iron oxide layers and colloids, Water Res., 43 (2009) 4238–4248.
  203. O.M. Alfano, D. Bahnemann, A.E. Cassano, R. Dillert, R. Goslich, Photocatalysis in water environments using artificial and solar light, Catal. Today, 58 (2000) 199–230.
  204. C.S. Zalazar, C.A. Martin, A.E. Cassano, Photocatalytic intrinsic reaction kinetics. II. Effects of oxygen concentration on the kinetics of the photocatalytic degradation of dichloroacetic acid, Chem. Eng. Sci., 60 (2005) 4311–4322.
  205. H. Kiang, X. Li, Y. Yang, K. Sze, Effects of dissolved oxygen, pH, and anions on the 2,3-dichlorophenol degradation by photocatalytic reaction with anodic TiO2 nanotube films, Chemosphere, 73 (2008) 805–812.
  206. Y. Wang, C. Hong, TiO2-mediated photomineralization of 2-chlorobiphenyl: the role of O2, Water Res., 34 (2000) 2791–2797.
  207. H. Gerischer, A. Heller, The role of oxygen in photooxidation of organic molecules on semiconductor particles, J. Phys. Chem., 95 (1991) 5261–5267.
  208. N.K. Youn, J.E. Heo, O.S. Joo, H. Lee, J. Kim, B.K. Min, The effect of dissolved oxygen on the 1,4-dioxane degradation with TiO2 and Au–TiO2 photocatalysts, J. Hazard. Mater., 177 (2010) 216–221.
  209. S. Chavadej, P. Phuaphromyod, E. Gulari, P. Rangsunvigit, T. Sreethawong, Photocatalytic degradation of 2-propanol by using Pt/TiO2 prepared by microemulsion technique, Chem. Eng. J., 137 (2008) 489–495.
  210. V. Iliev, D. Tomova, L. Bilyarska, A. Eliyas, L. Petrov, Photocatalytic properties of TiO2 modified with platinum and silver nanoparticles in the degradation of oxalic acid in aqueous solution, Appl. Catal., B, 63 (2006) 266–271.
  211. Y. Ma, C. Chang, Y. Chiang, H. Sung, A.C. Chao, Photocatalytic degradation of lignin using Pt/TiO2 as the catalyst, Chemosphere, 71 (2008) 998–1004.
  212. A. Dawson, P.V. Kamat, Semiconductor–metal nanocomposites. Photoinduced fusion and photocatalysis of gold-capped TiO2 (TiO2/gold) nanoparticles, J. Phys. Chem. B, 105 (2001) 960–966.
  213. V. Iliev, D. Tomova, L. Bilyarska, G. Tyuliev, Influence of the size of gold nanoparticles deposited on TiO2 upon the photocatalytic destruction of oxalic acid, J. Mol. Catal. A, 263 (2007) 32–38.
  214. D. Chen, M. Sivakumar, K.A. Ray, Dev. Synthesis of nickel nanoparticles in water-in-oil microemulsions, Chem. Eng. Miner. Process, 8 (2000) 506.
  215. D.F. Ollis, Photocatalytic purification and remediation of contaminated air and water, Surf. Chem. Catal., 3 (2000) 407.
  216. S.W. Lam, K. Chiang, T.M. Lim, R. Amal, G.K.-C. Low, Effect of charge trapping species of cupric ions on the photocatalytic oxidation of resorcinol, Appl. Catal., B, 55 (2005) 123.
  217. D. Beydoun, H. Tse, R. Amal, G.K.-C. Low, S. McEvoy, Effect of copper(II) on the photocatalytic degradation of sucrose, J. Mol. Catal., A, 177 (2002) 265.
  218. E.C. Butler, A.P. Davis, Photocatalytic oxidation in aqueous titanium dioxide suspensions: the influence of dissolved transition metals, J. Photochem. Photobiol., A, 70 (1993) 273.
  219. K.-I. Okamoto, Y. Yamamoto, H. Tanaka, M. Tanaka, A. Itaya, Heterogeneous photocatalytic decomposition of phenol over TiO2 powder, Bull. Chem. Soc. Jpn., 58 (1985) 2015.
  220. N. San, A. Hatipoglu, G. Kocturk, Z. Cinar, Photocatalytic degradation of 4-nitrophenol in aqueous TiO2 suspensions: theoretical prediction of the intermediates, J. Photochem. Photobiol. A, 146 (2002) 189.
  221. V. Brezova, A. Blazkova, E. Borosova, M. Sepan, R. Fiala, The influence of dissolved metal ions on the photocatalytic degradation of phenol in aqueous TiO2 suspensions, J. Mol. Catal. A, 98 (1995) 109.
  222. S.W. Lam, M. Hermawan, H.M. Coleman, K. Fisher, R. Amal. The role of copper (II) ions in the photocatalytic oxidation of 1,4-dioxane, J. Mol. Catal. A, 278 (2007) 152–159.
  223. W.J. Cooper, C.J. Cramer, N.H. Martin, S.P. Mezyk, K.E. O’Shea, C. vonSonntag, Free radical mechanisms for the treatment of methyl tert-butyl ether (MTBE) via advanced oxidation/reductive processes in aqueous solutions, Chem. Rev., 109 (2009) 1302–1345.
  224. C. von Sonntag, H.-P. Schuchmann, Peroxyl Radicals in Aqueous Solutions, in: Z. Alfassi, Ed., Peroxyl Radicals, John Wiley, New York, 1997, pp. 173–234.
  225. J.E. Bennett, R. Summers, Product studies of the mutual termination reactions of sec-alkylperoxy radicals: evidence for non-cyclic termination, Can. J. Chem., 52 (1974) 1377–1379.
  226. M.A. Beckett, I. Hua, Elucidation of the 1,4-dioxane decomposition pathway at discrete ultrasonic frequencies, Environ. Sci. Technol., 34 (2000) 3944–3953.
  227. D. Vasudevan, A.T. Stone, Adsorption of catechols, 2-aminophenols, and 1,2-phenylenediamines at the metal (hydr)oxide/water interface: effect of ring substituents on the adsorption onto TiO2, Environ. Sci. Technol., 30 (1996) 1604.
  228. N. Karpel Vel Leitner, M. Dore, Mechanism of the reaction between hydroxyl radicals and glycolic, glyoxylic, acetic and oxalic acids in aqueous solution: consequence on hydrogen peroxide consumption in the H2O2/UV and O3/H2O2 systems, Water Res., 31 (1997) 1383–1397.
  229. Y. Tan, Y.B. Lim, K.E. Altieri, S.P. Seitzinger, B.J. Turpin, Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal, Atmos. Chem. Phys., 12 (2012) 801–813.
  230. G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O in aqueous solution, J. Phys. Chem. Ref. Data, 17 (1988) 513–886.
  231. A. Abe, Distribution of 1,4-dioxane in relation to possible sources in the water environment, Sci. Total Environ. 227 (1999) 41–47.
  232. A.A. Safarzadeh, J.R. Bolton, S.R. Caster, Ferrioxalate-mediated photodegradation of organic pollutants in contaminated water, Water Res., 31 (1997) 787–798.
  233. E.L. Fincher, W.J. Payne, Bacterial utilization of ether glycols, Appl. Microbiol., 10 (1962) 542–547.
  234. F.J. Barajas-Rodriguez, L.C. Murdoch, R.W. Falta, D.L. Freedman, Simulation of in situ biodegradation of 1,4-dioxane under metabolic and cometabolic conditions, J. Contam. Hydrol., 223 (2019) 103464.
  235. S. Mahendra, L. Alvarez-Cohen, Pseudonocardia dioxanivorans sp. nov., a novel actinomycete that grows on 1,4-dioxane, Int. J. Syst. Evol. Microbiol., 55 (2005) 593–598.
  236. U. Kohlweyer, B. Thiemer, T. Schrader, J.R. Andreesen, Tetrahydrofuran degradation by a newly isolated culture of Pseudonocardia sp. strain K1, FEMS Microbiol. Lett., 186 (2000) 301–306.
  237. K. Nakamiya, S. Hashimoto, H. Ito, J.S. Edmonds, M. Morita, Degradation of 1,4-dioxane and cyclic ethers by an isolated fungus, Appl. Environ. Microbiol., 71 (2005) 1254–1258.
  238. S. Mahendra, L. Alvarez-Cohen, Kinetics of 1,4-Dioxane biodegradation by monooxygenase-expressing bacteria, Environ. Sci. Technol., 40 (2006) 5435–5442.
  239. K. Sei, K. Miyagaki, T. Kakinoki, K. Fukugasako, D. Inoue, M. Ike, Isolation and characterization of bacterial strains that have high ability to degrade 1,4-dioxane as a sole carbon and energy source, Biodegradation, 24 (2013) 665–674.
  240. S.R. Kane, A.Y. Chakicherla, P.S. Chain, R. Schmidt, M.W. Shin, T.C. Legler, K.M. Scow, F.W. Larimer, S.M. Lucas, P.M. Richardson, K.R. Hristova, Whole-genome analysis of the methyl tertiary-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1, J. Bacteriol., 189 (2007) 1931–1945.
  241. B.L. Burback, J.J. Perry, Biodegradation and biotransformation of groundwater pollutant mixtures by Mycobacterium vaccae, Appl. Environ. Microbiol., 59 (1993) 1025–1029.
  242. N. Yamamoto, Y. Saito, D. Inoue, K. Sei, M. Ike, Characterization of newly isolated Pseudonocardia sp. N23 with high 1,4-dioxanedegrading ability, J. Biosci. Bioeng., 125 (2018) 552–558.
  243. Ministry of the Environment Government of Japan: Items Related to the Protection of Human Health. National Effluent Standards. Ministry of the Environment Government of Japan, Tokyo, 2012.
  244. Y. Kimura, K. Isaka, F. Kazama, Tolerance level of dissolved oxygen to feed into anaerobic ammonium oxidation (anammox) reactor, J. Water Environ. Technol., 9 (2011) 169–178.
  245. G. Cema, E. Płaza, J. Trela, J. Surmacz-Górska, Dissolved oxygen as a factor influencing nitrogen removal rates in a onestage system with partial nitritation and Anammox process, Water Sci. Technol., 64 (2011) 1009–1015.
  246. K. Isaka, M. Udagawa, Y. Kimura, K. Sei, M. Ike, Biological wastewater treatment of 1,4-dioxane using polyethylene glycol gel carriers entrapping Afipia sp. D1, J. Biosci. Bioeng., 121 (2016) 203–208.
  247. A. Grostern, C.M. Sales, W.Q. Zhuang, O. Erbilgin, L. Alvarez-Cohen, Glyoxylate metabolism is a key feature of the metabolic degradation of 1,4-dioxane by Pseudonocardia dioxanivorans strain CB1190, Appl. Environ. Microbiol., 78 (2012) 3298–3308.
  248. D.Z. Chen, X.J. Jin, J. Chen, J.X. Ye, N.X. Jiang, J.M. Chen, Intermediates and substrate interaction of 1,4-dioxane degradation by the effective metabolizer Xanthobacter flavus DT8, Int. Biodeterior. Biodegrad., 106 (2016) 133–140.
  249. R.J. Steffan, K. McClay, S. Vainberg, C.W. Condee, D. Zhang, Biodegradation of the gasoline oxygenates methyl tert-butyl ether, ethyl tert-butyl ether, and tert-amyl methyl ether by propane-oxidizing bacteria, Appl. Environ. Microbiol., 63 (1997) 4216–4222.
  250. E.L. Johnson, C.A. Smith, K.T. O’Reilly, M.R. Hyman, Induction of methyl tertiary butyl ether (MTBE)-oxidizing activity in Mycobacterium vaccae JOB5 by MTBE, Appl. Environ. Microbiol,, 70 (2004) 1023–1030.
  251. D. Hunkeler, R.U. Meckenstock, B. Sherwood Lollar, T.C. Schmidt, J.T. Wilson, A Guide for Assessing Biodegradation and Source Identification of Organic Ground Water Contaminants Using Compound Specific Isotope Analysis (CSIA), US Environmental Protection Agency, Ada, Oklahoma, 2008.
  252. S.H.B. Wang, K.-H. Chu, Biodegradation of 1,4-dioxane: effects of enzyme inducers and trichloroethylene, Sci. Total Environ., 520 (2015) 154–159.
  253. K. Sei, K. Miyagaki, T. Kakinoki, K. Fukugasako, D. Inoue, M. Ike, Isolation and characterization of bacterial strains that have high ability to degrade 1,4-dioxane as a sole carbon and energy source, Biodegradation, 24 (2013) 665–674.
  254. K. Skinner, L. Cuiffetti, M. Hyman, Metabolism and cometabolism of cyclic ethers by a filamentous fungus, a Graphium sp., Appl. Environ. Microbiol., 75 (2009) 5514–5522.
  255. D.E. Burmaster, The new pollution: groundwater contamination, Environment, 24 (1982) 22–36.
  256. K. Nakamiya, S. Hashimoto, H. Ito, J.S. Edmonds, M. Morita, Degradation of 1,4-dioxane and cyclic ethers by an isolated fungus, Appl. Environ. Microbiol., 71 (2005) 1254–1258.
  257. R.L. Ely, K.J. Williamson, M.R. Hyman, D.J. Arp, Cometabolism of chlorinated solvents by nitrifying bacteria: kinetics, substrate interactions, toxicity effects, and bacterial response, Biotechnol. Bioeng., 54 (1997) 520–534.
  258. B. Sun, K. Ko, J.A. Ramsay, Biodegradation of 1,4-dioxane by a Flavobacterium, Biodegradation, 22 (2011) 651–659.
  259. J.D. Young, W.H. Braun, P.J. Gehring, B.S. Horvath, R.L Daniel, 1,4-Dioxane and ß-hydroxyethoxyacetic acid excretion in urine of humans exposed to dioxane vapors, Toxicol. Appl. Pharmacol., 38 (1976) 643–646.
  260. Y.-T. Woo, J.C. Arcos, M.F. Argus, G.W. Griffin, K. Nishiyama, Metabolism of dioxane: identification of dioxane-2-one as the major urinary metabolite, Biochem. Pharmacol., 26 (1977) 1535–1538.
  261. K. Sei, T. Kakinoki, D. Inoue, S. Soda, M. Fujita, M. Ike, Evaluation of the biodegradation potential of 1,4-dioxane in river, soil and activated sludge samples, Biodegradation, 21 (2010) 585–591.
  262. S. Mahendra, C.J. Petzold, E.E. Baidoo, J.D. Keasling, L. Alvarez-Cohen, Identification of the intermediates of in vivo oxidation of 1,4- dioxane by monooxygenase-containing bacteria, Environ. Sci. Technol., 41 (2007) 7330 –7336.
  263. Y.-M. Kim, J.-R. Jeon, K. Murugesan, E.-J. Kim, Y.-S. Chang, Biodegradation of 1,4-dioxane and transformation of related cyclic compounds by a newly isolated Mycobacterium sp. PH-06, Biodegradation, 20 (2009) 511–519.
  264. S.-Y.D. Chiang, R. Mora, W.H. Diguiseppi, G. Davis, K. Sublette, P. Gedalanga, S. Mahendra, Characterizing the intrinsic bioremediation potential of 1,4-dioxane and trichloroethene using innovative environmental diagnostic tools, J. Environ. Monit., 14 (2012) 2317–2326.
  265. G.J. Zylstra, D.T. Gibson, Toluene degradation by Pseudomonas putida F1, J. Biol. Chem., 264 (1989) 14940–14946.
  266. J.O. Sharp, C.M. Sales, J.C. LeBlanc, J. Liu, T.K. Wood, L.D. Eltis, WW. Mohn, L. Alvarez-Cohan, An inducible propane monooxygenase is responsible for N-nitrosodimethylamine degradation by Rhodococcus sp. strain RHA1, Appl. Environ. Microbiol., 73 (2007) 6930–6938.
  267. P.B. Gedalanga, P. Pornwongthong, R. Mora, S-Y.D. Chiang, B. Baldwin, D. Ogles, S. Mahendra, Identification of biomarker genes to predict biodegradation of 1,4-dioxane, Appl. Environ. Microbiol., 80 (2014) 3209–3321.