References

  1. S. Liu, S. Jian, Z. Huang, Carbon spheres/activated carbon composite materials with high Cr(VI) adsorption capacity prepared by a hydrothermal method, J. Hazard. Mater., 173 (2010) 377–383.
  2. K. Labus, S. Gryglewicz, J. Machnikowski, Granular KOH-activated carbons from coal-based cokes and their CO2 adsorption capacity, Fuel, 118 (2014) 9–15.
  3. X. He, Y. Geng, J. Qiu, M. Zheng, S. Long, X. Zhang, Effect of activation time on the properties of activated carbons prepared by microwave-assisted activation for electric double layer capacitors, Carbon, 48 (2010) 1662–1669.
  4. Z. Qiang, W. Ling, F. Tian, Kinetics and mechanism for omethoate degradation by catalytic ozonation with Fe(III)-loaded activated carbon in water, Chemosphere, 90 (2013) 1966–1972.
  5. Q. Li, Y. Qi, C. Gao, Chemical regeneration of spent powdered activated carbon used in decolorization of sodium salicylate for the pharmaceutical industry, J. Cleaner Prod., 86 (2015) 424–431.
  6. S.M. Nasehi, S. Ansari, M. Sarshar, Removal of dark colored compounds from date syrup using activated carbon: a kinetic study. J. Food Eng., 111 (2012) 490–495.
  7. Y.L. Yeh, A. Thomas, Color removal from dye wastewaters by adsorption using powdered activated carbon: mass transfer studies, J. Chem. Technol. Biotechnol., 63 (2010) 48–54.
  8. S. Roman, B. Ledesma, J.F. Gonzalez, A. Al-Kassir, G. Engo, A. Alvarez-Murillo, Two stage thermal regeneration of exhausted activated carbons. Steam gasification of effluents, J. Anal. Appl. Pyrol., 103 (2013) 201–206.
  9. S.G. Huling, E. Kan, C. Caldwell, S. Park, Fenton-driven chemical regeneration of MTBE-spent granular activated carbon - a pilot study, J. Hazard. Mater., 205 (2012) 55–62.
  10. C.H. Weng, Y.T. Lin, S.C. Hsu, Electrochemical regeneration of Zn-saturated granular activated carbon from electroplating wastewater plant, Sep. Sci. Technol., 49 (2014) 506–512.
  11. E. Yagmur, S. Turkoglu, A. Banford, Z. Aktas, The relative performance of microwave regenerated activated carbons on the removal of phenolic pollutants, J. Cleaner Prod., 149 (2017) 1109–1117.
  12. K. Nath, M.S. Bhakhar, Microbial regeneration of spent activated carbon dispersed with organic contaminants: mechanism, efficiency, and kinetic models, Environ. Sci. Pollut. Res., 18 (2011) 534–546.
  13. E.T. Kostas, D. Beneroso, J.P. Robinson, The application of microwave heating in bioenergy: a review on the microwave pre-treatment and upgrading technologies for biomass, Renew. Sustain. Energy Rev., 77 (2017) 12–27.
  14. K. C Oliver, Controlled microwave heating in modern organic synthesis. Cheminform, 43 (2010) 6250–6284.
  15. E.J. Bain, J.M. Calo, R. Spitz-Steinberg, J. Kirchner, J. Axén, Electrosorption/electrodesorption of arsenic on a granular activated carbon in the presence of other heavy metals, Energy Fuels, 24 (2010) 3415.
  16. R.V. Mcquillan, G.W. Stevens, K.A. Mumford, The electrochemical regeneration of granular activated carbons: a review, J. Hazard. Mater., 355 (2018) 34–49.
  17. C.H. Weng, M.C. Hsu, Regeneration of granular activated carbon by an electrochemical process, Sep. Purif. Technol., 64 (2008) 227–236.
  18. Ö. Aktaş, F. Çeçen, Bioregeneration of activated carbon: a review, Int. Biodeterior. Biodegrad., 59 (2007) 257–272.
  19. F. Salvador, N. Martin-Sanchez, R. Sanchez-Hernandez, M. Jesus Sanchez-Montero, C. Izquierdo, Regeneration of carbonaceous adsorbents. Part I: Thermal regeneration, Microporous Mesoporous Mater., 202 (2015) 259–276.
  20. R. Pełech, E. Milchert, A. Wróblewska, Desorption of chloroorganic compounds from a bed of activated carbon, J. Colloid Interface Sci., 285 (2005) 518–524.
  21. R. Berenguer, J.P. Marco-Lozar, C. Quijada, D. Cazorlaamorós, E. Morallón, Comparison among chemical, thermal, and electrochemical regeneration of phenol-saturated activated carbon, Energy Fuels, 24 (2010) 3366–3372.
  22. I.K. Shah, P. Pre, B.J. Alappat, Effect of thermal regeneration of spent activated carbon on volatile organic compound adsorption performances, J. Taiwan Inst. Chem. Eng., 45 (2014) 1733–1738.
  23. J. Carratalá-Abril, M.A. Lillo-Ródenas, A. Linares-Solano, D. Cazorla-Amorós, Regeneration of activated carbons saturated with benzene or toluene using an oxygen-containing atmosphere, Chem. Eng. Sci., 65 (2010) 2190–2198.
  24. G.D.O. Okwadha, J. Li, B. Ramme, D. Kollakowsky, D. Michaud, Thermal removal of mercury in spent powdered activated carbon from TOXECON process, J. Environ. Eng., 135 (2009) 1032–1040.
  25. S. Román, B. Ledesma, A. Álvarez-Murillo, J.F. González, Comparative study on the thermal reactivation of spent adsorbents. Fuel Process. Technol., 116 (2013) 358–365.
  26. S.W. Nahm, G.S. Wang, PARK, YoungKwon, C.K. Sang, Thermal and chemical regeneration of spent activated carbon and its adsorption property for toluene, Chem. Eng. J., 210 (2012) 500–509.
  27. L.P. Bsc, D.E. Bsc, P.G. Bsc, K.K. Bsc, S.L. Bsc, C.S. Bsc, L. Perry, D. Essex, P. Giess, Improving the performance of granular activated carbon (GAC) via pre-regeneration acid treatment, Water Environ. J., 19 (2010) 159–166.
  28. E. Zhou, Y. He, X. Ma, G. Liu, Y. Huang, C. Chen, W. Wang, Study of the combination of sulfuric acid treatment and thermal regeneration of spent powdered activated carbons from decolourization process in glucosamine production, Chem. Eng. Process., 121 (2017) 224–231.
  29. W. He, G. Lu, J. Cu, L. Wu, L. Liao, Regeneration of spent activated carbon by yeast and chemical method, Chinese J. Chem. Eng., 20 (2012) 659–664.
  30. J. Guo, W.S. Xu, Y.L. Chen, A.C. Lua, Adsorption of NH3 onto activated carbon prepared from palm shells impregnated with H2SO4, J. Colloid Interface Sci., 281 (2005) 285–290.
  31. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60 (1938) 309–319.
  32. B.C. Lippens, J.H. De Boer, Studies on pore systems in catalysts: V. The t method, J. Catal., 4 (1965) 319–323.
  33. K. Kaneko, Determination of pore size and pore size distribution: 1. Adsorbents and catalysts, J. Membr. Sci., 96 (1994) 59–89.
  34. C.O. Ania, J.B. Parra, C. Pevida, A. Arenillas, F. Rubiera, J.J. Pis, Pyrolysis of activated carbons exhausted with organic compounds. J. Anal. Appl. Pyrol., 74 (2005) 518–524.
  35. B. Ledesma, S. Roman, A. Alvarezmurillo, E. Sabio, J.F. Gonzalez, Cyclic adsorption/thermal regeneration of activated carbons. J. Anal. Appl. Pyrol., 106 (2014) 112–117.
  36. T. Karanfil, Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 1. Priority pollutants. Environ. Sci. Technol., 33 (1999) 3217–3224.
  37. L. Li, P.A. Quinlivan, D.R.U. Knappe, Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution, Carbon, 40 (2002) 2085–2100.
  38. F. Kaouah, S. Boumaza, T. Berrama, M. Trari, Z. Bendjama, Preparation and characterization of activated carbon from wild olive cores (oleaster) by H3PO4 for the removal of Basic Red 4, J. Cleaner Prod., 54 (2013) 296–306.
  39. M. Molinasabio, F. Rodriguezreinoso, Role of chemical activation in the development of carbon porosity, Colloids Surf., A, 241 (2004) 15–25.
  40. H.Y. Chang, H.P. Yun, R.P. Chong, Effects of pre-carbonization on porosity development of activated carbons from rice straw, Carbon, 39 (2001) 559–567.
  41. A.L. Cazetta, O.P. Junior, A.M.M. Vargas, A.P.D. Silva, X. Zou, T. Asefa, V.C. Almeida, Thermal regeneration study of high surface area activated carbon obtained from coconut shell: Characterization and application of response surface methodology, J. Anal. Appl. Pyrol., 101 (2013) 53–60.
  42. A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Poschl, Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information, Carbon, 43 (2005) 1731–1742.
  43. W. Zhu, K. Arao, M. Nakamura, Y. Takagawa, K. Miura, J. Kobata, E. Marin, G. Pezzotti, Raman spectroscopic studies of stress-induced structure alteration in diamond-like carbon films, Diamond Related Mater., 94 (2019) 1–7.
  44. J. G. Wang, H. Liu, H. Sun, W. Hua, H. Wang, X. Liu, B. Wei, One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors, Carbon, 127 (2018) 85–92.
  45. S. Costa, B. Scheibe, M. Rummeli, E. Borowiak-Palen, Raman spectroscopy study on concentrated acid treated carbon nanotubes, Phys. Status Solidi B-Basic Solid State Phys., 246 (2009) 2717–2720.
  46. X. Ma, H. Yuan, M. Hu, A simple method for synthesis of ordered mesoporous carbon, Diamond Related Mater., (2019), 10.1016/j.diamond.2019.107480.