References
- S. Liu, S. Jian, Z. Huang, Carbon spheres/activated carbon
composite materials with high Cr(VI) adsorption capacity
prepared by a hydrothermal method, J. Hazard. Mater.,
173 (2010) 377–383.
- K. Labus, S. Gryglewicz, J. Machnikowski, Granular KOH-activated
carbons from coal-based cokes and their CO2
adsorption capacity, Fuel, 118 (2014) 9–15.
- X. He, Y. Geng, J. Qiu, M. Zheng, S. Long, X. Zhang, Effect of
activation time on the properties of activated carbons prepared
by microwave-assisted activation for electric double layer
capacitors, Carbon, 48 (2010) 1662–1669.
- Z. Qiang, W. Ling, F. Tian, Kinetics and mechanism for
omethoate degradation by catalytic ozonation with Fe(III)-loaded activated carbon in water, Chemosphere, 90 (2013)
1966–1972.
- Q. Li, Y. Qi, C. Gao, Chemical regeneration of spent powdered
activated carbon used in decolorization of sodium salicylate
for the pharmaceutical industry, J. Cleaner Prod., 86 (2015)
424–431.
- S.M. Nasehi, S. Ansari, M. Sarshar, Removal of dark colored
compounds from date syrup using activated carbon: a kinetic
study. J. Food Eng., 111 (2012) 490–495.
- Y.L. Yeh, A. Thomas, Color removal from dye wastewaters by
adsorption using powdered activated carbon: mass transfer
studies, J. Chem. Technol. Biotechnol., 63 (2010) 48–54.
- S. Roman, B. Ledesma, J.F. Gonzalez, A. Al-Kassir, G. Engo,
A. Alvarez-Murillo, Two stage thermal regeneration of exhausted
activated carbons. Steam gasification of effluents, J. Anal. Appl.
Pyrol., 103 (2013) 201–206.
- S.G. Huling, E. Kan, C. Caldwell, S. Park, Fenton-driven
chemical regeneration of MTBE-spent granular activated
carbon - a pilot study, J. Hazard. Mater., 205 (2012) 55–62.
- C.H. Weng, Y.T. Lin, S.C. Hsu, Electrochemical regeneration
of Zn-saturated granular activated carbon from electroplating
wastewater plant, Sep. Sci. Technol., 49 (2014) 506–512.
- E. Yagmur, S. Turkoglu, A. Banford, Z. Aktas, The relative
performance of microwave regenerated activated carbons on
the removal of phenolic pollutants, J. Cleaner Prod., 149 (2017)
1109–1117.
- K. Nath, M.S. Bhakhar, Microbial regeneration of spent
activated carbon dispersed with organic contaminants:
mechanism, efficiency, and kinetic models, Environ. Sci. Pollut.
Res., 18 (2011) 534–546.
- E.T. Kostas, D. Beneroso, J.P. Robinson, The application of
microwave heating in bioenergy: a review on the microwave
pre-treatment and upgrading technologies for biomass, Renew.
Sustain. Energy Rev., 77 (2017) 12–27.
- K. C Oliver, Controlled microwave heating in modern organic
synthesis. Cheminform, 43 (2010) 6250–6284.
- E.J. Bain, J.M. Calo, R. Spitz-Steinberg, J. Kirchner, J. Axén,
Electrosorption/electrodesorption of arsenic on a granular
activated carbon in the presence of other heavy metals, Energy
Fuels, 24 (2010) 3415.
- R.V. Mcquillan, G.W. Stevens, K.A. Mumford, The electrochemical
regeneration of granular activated carbons: a review,
J. Hazard. Mater., 355 (2018) 34–49.
- C.H. Weng, M.C. Hsu, Regeneration of granular activated
carbon by an electrochemical process, Sep. Purif. Technol.,
64 (2008) 227–236.
- Ö. Aktaş, F. Çeçen, Bioregeneration of activated carbon:
a review, Int. Biodeterior. Biodegrad., 59 (2007) 257–272.
- F. Salvador, N. Martin-Sanchez, R. Sanchez-Hernandez, M. Jesus
Sanchez-Montero, C. Izquierdo, Regeneration of carbonaceous
adsorbents. Part I: Thermal regeneration, Microporous
Mesoporous Mater., 202 (2015) 259–276.
- R. Pełech, E. Milchert, A. Wróblewska, Desorption of
chloroorganic compounds from a bed of activated carbon,
J. Colloid Interface Sci., 285 (2005) 518–524.
- R. Berenguer, J.P. Marco-Lozar, C. Quijada, D. Cazorlaamorós,
E. Morallón, Comparison among chemical, thermal, and
electrochemical regeneration of phenol-saturated activated
carbon, Energy Fuels, 24 (2010) 3366–3372.
- I.K. Shah, P. Pre, B.J. Alappat, Effect of thermal regeneration
of spent activated carbon on volatile organic compound
adsorption performances, J. Taiwan Inst. Chem. Eng., 45 (2014)
1733–1738.
- J. Carratalá-Abril, M.A. Lillo-Ródenas, A. Linares-Solano,
D. Cazorla-Amorós, Regeneration of activated carbons
saturated with benzene or toluene using an oxygen-containing
atmosphere, Chem. Eng. Sci., 65 (2010) 2190–2198.
- G.D.O. Okwadha, J. Li, B. Ramme, D. Kollakowsky, D. Michaud,
Thermal removal of mercury in spent powdered activated
carbon from TOXECON process, J. Environ. Eng., 135 (2009)
1032–1040.
- S. Román, B. Ledesma, A. Álvarez-Murillo, J.F. González,
Comparative study on the thermal reactivation of spent
adsorbents. Fuel Process. Technol., 116 (2013) 358–365.
- S.W. Nahm, G.S. Wang, PARK, YoungKwon, C.K. Sang,
Thermal and chemical regeneration of spent activated carbon
and its adsorption property for toluene, Chem. Eng. J.,
210 (2012) 500–509.
- L.P. Bsc, D.E. Bsc, P.G. Bsc, K.K. Bsc, S.L. Bsc, C.S. Bsc, L. Perry,
D. Essex, P. Giess, Improving the performance of granular
activated carbon (GAC) via pre-regeneration acid treatment,
Water Environ. J., 19 (2010) 159–166.
- E. Zhou, Y. He, X. Ma, G. Liu, Y. Huang, C. Chen, W. Wang,
Study of the combination of sulfuric acid treatment and thermal
regeneration of spent powdered activated carbons from
decolourization process in glucosamine production, Chem.
Eng. Process., 121 (2017) 224–231.
- W. He, G. Lu, J. Cu, L. Wu, L. Liao, Regeneration of spent
activated carbon by yeast and chemical method, Chinese
J. Chem. Eng., 20 (2012) 659–664.
- J. Guo, W.S. Xu, Y.L. Chen, A.C. Lua, Adsorption of NH3
onto activated carbon prepared from palm shells impregnated
with H2SO4, J. Colloid Interface Sci., 281 (2005) 285–290.
- S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in
multimolecular layers, J. Am. Chem. Soc., 60 (1938) 309–319.
- B.C. Lippens, J.H. De Boer, Studies on pore systems in catalysts:
V. The t method, J. Catal., 4 (1965) 319–323.
- K. Kaneko, Determination of pore size and pore size distribution:
1. Adsorbents and catalysts, J. Membr. Sci., 96 (1994) 59–89.
- C.O. Ania, J.B. Parra, C. Pevida, A. Arenillas, F. Rubiera,
J.J. Pis, Pyrolysis of activated carbons exhausted with organic
compounds. J. Anal. Appl. Pyrol., 74 (2005) 518–524.
- B. Ledesma, S. Roman, A. Alvarezmurillo, E. Sabio, J.F. Gonzalez,
Cyclic adsorption/thermal regeneration of activated carbons.
J. Anal. Appl. Pyrol., 106 (2014) 112–117.
- T. Karanfil, Role of granular activated carbon surface chemistry
on the adsorption of organic compounds. 1. Priority pollutants.
Environ. Sci. Technol., 33 (1999) 3217–3224.
- L. Li, P.A. Quinlivan, D.R.U. Knappe, Effects of activated carbon
surface chemistry and pore structure on the adsorption of
organic contaminants from aqueous solution, Carbon, 40 (2002)
2085–2100.
- F. Kaouah, S. Boumaza, T. Berrama, M. Trari, Z. Bendjama,
Preparation and characterization of activated carbon from wild
olive cores (oleaster) by H3PO4 for the removal of Basic Red 4,
J. Cleaner Prod., 54 (2013) 296–306.
- M. Molinasabio, F. Rodriguezreinoso, Role of chemical
activation in the development of carbon porosity, Colloids Surf.,
A, 241 (2004) 15–25.
- H.Y. Chang, H.P. Yun, R.P. Chong, Effects of pre-carbonization
on porosity development of activated carbons from rice straw,
Carbon, 39 (2001) 559–567.
- A.L. Cazetta, O.P. Junior, A.M.M. Vargas, A.P.D. Silva,
X. Zou, T. Asefa, V.C. Almeida, Thermal regeneration study
of high surface area activated carbon obtained from coconut
shell: Characterization and application of response surface
methodology, J. Anal. Appl. Pyrol., 101 (2013) 53–60.
- A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Poschl,
Raman microspectroscopy of soot and related carbonaceous
materials: spectral analysis and structural information, Carbon,
43 (2005) 1731–1742.
- W. Zhu, K. Arao, M. Nakamura, Y. Takagawa, K. Miura,
J. Kobata, E. Marin, G. Pezzotti, Raman spectroscopic studies
of stress-induced structure alteration in diamond-like carbon
films, Diamond Related Mater., 94 (2019) 1–7.
- J. G. Wang, H. Liu, H. Sun, W. Hua, H. Wang, X. Liu, B. Wei,
One-pot synthesis of nitrogen-doped ordered mesoporous
carbon spheres for high-rate and long-cycle life supercapacitors,
Carbon, 127 (2018) 85–92.
- S. Costa, B. Scheibe, M. Rummeli, E. Borowiak-Palen, Raman
spectroscopy study on concentrated acid treated carbon
nanotubes, Phys. Status Solidi B-Basic Solid State Phys.,
246 (2009) 2717–2720.
- X. Ma, H. Yuan, M. Hu, A simple method for synthesis of
ordered mesoporous carbon, Diamond Related Mater., (2019),
10.1016/j.diamond.2019.107480.