References

  1. S. Ebrahim, M. Abdel-Jawad, Economics of seawater desalination by reverse osmosis, Desalination, 99 (1994) 39–55.
  2. A. Malek, M.N.A. Hawlader, J.C. Ho, Design and economics of RO seawater desalination, Desalination, 105 (1996) 245–261.
  3. M.A. Darwish, N. Al-Najem, The water problem in Kuwait, Desalination, 177 (2005) 167–177.
  4. P. Fiorini, E. Sciubba, Thermoeconomic analysis of a MSF desalination plant, Desalination, 182 (2005) 39–51.
  5. N.M. Wade, Energy and cost allocation in dual-purpose power and desalination plants, Desalination, 123 (1999) 115–125.
  6. B. Van der Bruggen, C. Vandecasteele, Distillation vs. membrane filtration: overview of process evolutions in seawater desalination, Desalination, 143 (2002) 207–218.
  7. S.A. Avlonitis, Operational water cost and productivity improvements for small-size RO desalination plants, Desalination, 142 (2002) 295–304.
  8. A. Hafez, S. El-Manharawy, Economics of seawater RO desalination in the Red Sea region, Egypt. Part 1. A case study, Desalination, 153 (2003) 335–347.
  9. I.S. Jaber, M.R. Ahmed, Technical and economic evaluation of brackish groundwater desalination by reverse osmosis (RO) process, Desalination, 165 (2004) 209–213.
  10. G.Th. Vlachos, J.K. Kaldellis, Application of gas-turbine exhaust gases for brackish water desalination: a techno-economic evaluation, Appl. Therm. Eng., 24 (2004) 2487–2500.
  11. A. Poullikkas, Technical and economic analysis for the integration of small reverse osmosis desalination plants into MAST gas turbine cycles for power generation, Desalination, 172 (2005) 145–150.
  12. H. Alrobaei, Novel integrated gas turbine solar cogeneration power plant, Desalination, 220 (2008) 574–587.
  13. F. Trieb, H. Müller-Steinhagen, J. Kern, J. Scharfe, M. Kabariti, A. Al Taher, Technologies for large scale seawater desalination using concentrated solar radiation, Desalination, 235 (2009) 33–43.
  14. M.H. Khoshgoftar Manesh, H. Ghalami, M. Amidpour, M.H. Hamedi, Optimal coupling of site utility steam network with MED-RO desalination through total site analysis and exergoeconomic optimization, Desalination, 316 (2013) 42–52.
  15. A. Al-Karaghouli, L.L. Kazmerski, Energy consumption and water production cost of conventional and renewable-energypowered desalination processes, Renewable Sustainable Energy Rev., 24 (2013) 343–356.
  16. M.Y. Park, S. Shin, E.S. Kim, Effective energy management by combining gas turbine cycles and forward osmosis desalination process, Appl. Energy, 154 (2015) 51–61.
  17. V. Eveloy, P. Rodgers, L. Qiu, Integration of an atmospheric solid oxide fuel cell-gas turbine system with reverse osmosis for distributed seawater desalination in a process facility, Energy Convers. Manage., 126 (2016) 944–959.
  18. M.W. Shahzad, M. Burhan, L. Ang, K.C. Ng, Energy-waterenvironment nexus underpinning future desalination sustainability, Desalination, 413 (2017) 52–64.
  19. M.W. Shahzad, M. Burhan, K.C. Ng, Pushing desalination recovery to the maximum limit: membrane and thermal processes integration, Desalination, 416 (2017) 54–64.
  20. M.W. Shahzad, M. Burhan, N. Ghaffour, K.C. Ng, A multi evaporator desalination system operated with thermocline energy for future sustainability, Desalination, 435 (2018) 268–277.
  21. M.W. Shahzad, K.C. Ng, K. Thu, Future energy benchmark for desalination: is it better to have a power (electricity) plant with RO or MED/MSF?, Int. J. Mod. Phys.: Conf. Ser., 42 (2016) 1660172.
  22. K.C. Ng, K. Thu, S.J. Oh, L. Ang, M.W. Shahzad, A.B. Ismail, Recent developments in thermally-driven seawater desalination: energy efficiency improvement by hybridization of the MED and AD cycles, Desalination, 356 (2015) 255–270.
  23. M.W. Shahzad, K.C. Ng, K. Thu, B.B. Saha, W.G. Chun, Multi effect desalination and adsorption desalination (MEDAD): a hybrid desalination method, Appl. Therm. Eng., 72 (2014) 289–297.
  24. K.C. Ng, K. Thu, M.W. Shahzad, W.J. Chun, Progress of adsorption cycle and its hybrids with conventional multi-effect desalination processes, IDA J. Desal. Water Reuse, 6 (2014) 44–56.
  25. A. Bejan, G. Tsatsaronis, M. Moran, M.J. Moran, Thermal Design and Optimization, John Wiley & Sons, New York, USA, 1996.
  26. H.Y. Kwak, D.J. Kim, J.S. Jeon, Exergetic and thermoeconomic analyses of power plants, Energy, 28 (2003) 343–360.
  27. E.J.C. Cavalcanti, Exergoeconomic and exergoenvironmental analyses of an integrated solar combined cycle system, Renewable Sustainable Energy Rev., 67 (2017) 507–519.
  28. Y.M. El-Sayed, Designing desalination systems for higher productivity, Desalination, 134 (2001) 129–158.
  29. A.A. Mabrouk, A.S. Nafey, H.E.S. Fath, Thermoeconomic analysis of some existing desalination processes, Desalination, 205 (2007) 354–373.
  30. A.N. Mabrouk, H.E.S. Fath, Technoeconomic study of a novel integrated thermal MSF–MED desalination technology, Desalination, 371 (2015) 115–125.
  31. A.S. Nafey, H.E.S. Fath, A.A. Mabrouk, Thermo-economic investigation of multi effect evaporation (MEE) and hybrid multi effect evaporation—multi stage flash (MEE-MSF) systems, Desalination, 201 (2006) 241–254.
  32. F.S. Pinto, R.C. Marques, Desalination projects economic feasibility: a standardization of cost determinants, Renewable Sustainable Energy Rev., 78 (2017) 904–915.
  33. P. Ahmadi, I. Dincer, M.A. Rosen, Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants, Energy, 36 (2011) 5886–5898.
  34. M.W. Shahzad, M. Burhan, K.C. Ng, A standard primary energy approach for comparing desalination processes, npj Clean Water, 2 (2019) 1.
  35. M.W. Shahzad, M. Burhan, D. Ybyraiymkul, K.C. Ng, Desalination processes’ efficiency and future roadmap, Entropy, 21 (2019) 84.
  36. F. Hafdhi, T. Khir, A. Ben Yahia, A. Ben Brahim, Exergoeconomic optimization of a double effect desalination unit used in an industrial steam power plant, Desalination, 438 (2018) 63–82.
  37. Z. Gomar, H. Heidary, M. Davoudi, Techno-economics study to select optimum desalination plant for Asalouyeh combined cycle power plant in Iran, World Acad. Sci. Eng. Technol., 5 (2011) 256–262.
  38. C. Luo, N. Zhang, N. Lior, H. Lin, Proposal and analysis of a dual-purpose system integrating a chemically recuperated gas turbine cycle with thermal seawater desalination, Energy, 36 (2011) 3791–3803.
  39. G. Filippini, M.A. Al-Obaidi, F. Manenti, I.M. Mujtaba, Performance analysis of hybrid system of multi effect distillation and reverse osmosis for seawater desalination via modelling and simulation, Desalination, 448 (2018) 21–35.
  40. Y. Cerci, Y. Cengel, B. Wood, N. Kahraman, E. Karakas, Improving the Thermodynamics and Economic of Desalination Plants: Minimum Work Required For Desalination and Case Studies of Four Working Plants, Technical Report, 2003.
  41. A. Al-Zahrani, J. Orfi, Z. Al-Suhaibani, B. Salim, H. Al-Ansary, Thermodynamic analysis of a reverse osmosis desalination unit with energy recovery system, Procedia Eng., 33 (2012) 404–414.
  42. B. Najafi, A. Shirazi, M. Aminyavari, F. Rinaldi, R.A. Taylor, Exergetic, economic and environmental analyses and multiobjective optimization of an SOFC-gas turbine hybrid cycle coupled with an MSF desalination system, Desalination, 334 (2014) 46–59.