References

  1. F.M.D. Chequer, T.M. Lizier, R. de Felício, M.V.B. Zanoni, H.M. Debonsi, N.P. Lopes, D.P. de Oliveira, The azo dye Disperse Red 13 and its oxidation and reduction products showed mutagenic potential, Toxicol. in Vitro, 29 (2015) 1906–1915.
  2. S. Munirasu, M.A. Haija, F. Banat, Use of membrane technology for oil field and refinery produced water treatment—a review, Process Saf. Environ. Prot., 100 (2016) 183–202.
  3. S. Judd, H. Qiblawey, M. Al-Marri, C. Clarkin, S. Watson, A. Ahmed, S. Bach, The size and performance of offshore produced water oil-removal technologies for reinjection, Sep. Purif. Technol., 134 (2014) 241–246.
  4. F.-R. Ahmadun, A. Pendashteh, L.C. Abdullah, D.R.A. Biak, S.S. Madaeni, Z.Z. Abidin, Review of technologies for oil and gas produced water treatment, J. Hazard. Mater., 170 (2009) 530–551.
  5. H. Mirbolooki, R. Amirnezhad, A.R. Pendashteh, Treatment of high saline textile wastewater by activated sludge microorganisms, J. Appl. Res. Technol., 15 (2017) 167–172.
  6. A.R. Pendashteh, A. Fakhru’l-Razi, N. Chaibakhsh, L.C. Abdullah, S.S. Madaeni, Z.Z. Abidin, Modeling of membrane bioreactor treating hypersaline oily wastewater by artificial neural network, J. Hazard. Mater., 192 (2011) 568–575.
  7. A. Fakhru’l-Razi, A. Pendashteh, Z.Z. Abidin, L.C. Abdullah, D.R.A. Biak, S.S. Madaeni, Application of membrane-coupled sequencing batch reactor for oilfield produced water recycle and beneficial re-use, Bioresour. Technol., 101 (2010) 6942–6949.
  8. D.H. Doyle, A.B. Brown, Produced Water Treatment and Hydrocarbon Removal with Organoclay, SPE Annual Technical Conference and Exhibition, Dallas, Texas, USA, 2000.
  9. R.M. Allen, R. Keith, Environmental Aspects of Produced Water Disposal, Paper Presented at the Middle East Oil Show, Society of Petroleum Engineers, Bahrain, 1993.
  10. R. Kendmark, M. Norozi, A. Rezaie, Biological treatment for produced water: a state of art, Environ. Toxicol. Chem., 89 (2014) 36–42.
  11. S. Jiménez, M.M. Micó, M. Arnaldos, F. Medin, S. Contreras, State of the art of produced water treatment, Chemosphere, 192 (2018) 186–208.
  12. B. Long, C.-z. Yang, W.-h. Pu, J.-k. Yang, F.-b. Liu, L. Zhang, J. Zhang, K. Cheng, Tolerance to organic loading rate by aerobic granular sludge in a cyclic aerobic granular reactor, Bioresour. Technol., 182 (2015) 314–322.
  13. N.H. Rosman, A.N. Anuar, S. Chelliapan, M.F.M. Din, Z. Ujang, Characteristics and performance of aerobic granular sludge treating rubber wastewater at different hydraulic retention time, Bioresour. Technol., 161 (2014) 155–161.
  14. B.-J. Ni, Formation, Characterization and Mathematical Modeling of the Aerobic Granular Sludge, Springer Theses, 2013, pp. 1–25.
  15. W.Q. Xue, T.W. Hao, H.R. Mackey, X.L. Li, R.C. Chan, G.H. Chen, The role of sulfate in aerobic granular sludge process for emerging sulfate-laden wastewater treatment, Water Res., 124 (2017) 513–520.
  16. S. López-Palau, A. Pinto, N. Basset, J. Dosta, J. Mata-Álvarez, ORP slope and feast–famine strategy as the basis of the control of a granular sequencing batch reactor treating winery wastewater, Biochem. Eng. J., 68 (2012) 190–198.
  17. Q.L. He, W. Zhang, S.L. Zhang, Z.C. Zou, H.Y. Wang, Performance and microbial population dynamics during stable operation and reactivation after extended idle conditions in an aerobic granular sequencing batch reactor, Bioresour. Technol., 238 (2017) 116–121.
  18. Z.W. Wang, M.C.M. van Loosdrecht, P.E. Saikaly, Gradual adaptation to salt and dissolved oxygen: strategies to minimize adverse effect of salinity on aerobic granular sludge, Water Res., 124 (2017) 702–712.
  19. T. Moustafa, Aerobic Granular Sludge – Study of Applications for Industrial and Domestic Wastewater, Master’s Thesis, Department of Civil and Environmental Engineering, University of Göteborg, Sweden, 2014, p. 85.
  20. S.F. Corsino, R. Campo, G. Di Bella, M. Torregrossa, G. Viviani, Aerobic granular sludge treating shipboard slop: analysis of total petroleum hydrocarbons loading rates on performances and stability, Process Biochem., 65 (2018) 164–171.
  21. G. Di Bella, M. Torregrossa, Aerobic granular sludge for leachate treatment, J. Chem. Eng. Trans., 38 (2014) 493–498.
  22. I. Oller, S. Malato, J.A. Sánchez-Pérez, Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review, Sci. Total Environ., 409 (2011) 4141–4166.
  23. J.J. Yuan, X.K. Zhang, H.D. Li, K. Wang, S.Y. Gao, Z. Yin, H.J. Yu, X.R. Zhu, Z.Z. Xiong, Y.M. Xie, TiO2/SnO2 double-shelled hollow spheres-highly efficient photocatalyst for the degradation of rhodamine B, Catal. Commun., 60 (2015) 129–133.
  24. A.J. Albrbar, A. Bjelajac, V. Đjokić, J. Miladinović, D. Janaćković, R. Petrović, Photocatalytic efficiency of titania photocatalysts in saline waters, J. Serb. Chem. Soc., 79 (2014) 1127–1140.
  25. R. Nadarajan, W.A.W.A. Bakar, R. Ali, R. Ismail, Photocatalytic degradation of 1,2-dichlorobenzene using immobilized TiO2/SnO2/WO3 photocatalyst under visible light: application of response surface methodology, Arabian J. Chem., 11 (2018) 34–47.
  26. S. Malato, J. Blanco, J. Cáceres, A.R. Fernández-Alba, A. Agüera, A. Rodríguez, Photocatalytic treatment of water-soluble pesticides by photo-Fenton and TiO2 using solar energy, Catal. Today, 76 (2002) 209–220.
  27. S. Malato, J. Blanco, D.C. Alarcón, M.I. Maldonado, P. Fernández-Ibáñez, W. Gernjak, Photocatalytic decontamination and disinfection of water with solar collectors, Catal. Today, 122 (2007) 137–149.
  28. S. Malato, P. Fernández-Ibanez, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: recent overview and trends, Catal. Today, 147 (2009) 1–59.
  29. S. Malato, J. Blanco, A. Vidal, D. Alarcón, M.I. Maldonado, J. Cáceres, W.G. Gernjak, Applied studies in solar photocatalytic detoxification: an overview, Sol. Energy, 75 (2013) 329–336.
  30. C. Minero, E. Pelizzetti, S. Malato, J. Blanco, Large solar plant photocatalytic water decontamination: degradation of pentachlorophenol, Chemosphere, 26 (1993) 2103–2119.
  31. W. Gernjak, M.L. Maldonado, S. Malato, J. Cáceres, T. Krutzler, A. Glaser, R. Bauer, Pilot-plant treatment of olive mill wastewater (OMW) by solar TiO2 photocatalysis and solar photo-Fenton, Sol. Energy, 77 (2004) 567–572.
  32. A. Vidal, A.I. Díaz, A. El Hraiki, M. Romero, I. Muguruza, F. Senhaji, J. González, Solar photocatalysis for detoxification and disinfection of contaminated water: pilot plant studies, Catal. Today, 54 (1999) 283–290.
  33. M.C. Liu, D.W. Jing, L. Zhao, L.J. Guo, Preparation of novel CdS-incorporated special glass composite as photocatalyst material used for catalyst-fixed system, Int. J. Hydrogen Energy, 35 (2010) 7058–7064.
  34. D.W. Jing, H. Liu, X.H. Zhang, L. Zhao, L.J. Guo, Photocatalytic hydrogen production under direct solar light in a CPC based solar reactor: reactor design and preliminary results, Energy Convers. Manage., 50 (2009) 2919–2926.
  35. F. Cao, Q.Y. Wei, H. Liu, N. Lu, L. Zhao, L.J. Guo, Development of the direct solar photocatalytic water splitting system for hydrogen production in Northwest China: design and evaluation of photoreactor, Renewable Energy, 121 (2018) 153–163.
  36. Q.Y. Wei, Y. Yang, J.Y. Hou, H. Liu, F. Cao, L. Zhao, Direct solar photocatalytic hydrogen generation with CPC photoreactors: system development, Sol. Energy, 153 (2017) 215–223.
  37. S. Malato, J. Blanco, A. Vidal, C. Richter, Photocatalysis with solar energy at a pilot-plant scale: an overview, Appl. Catal., B, 37 (2002) 1–15.
  38. S. Malato, J. Blanco, C. Richter, D. Curcó, J. Giménez, Lowconcentrating CPC collectors for photocatalytic water detoxification: comparison with a medium concentrating solar collector, Water Sci. Technol., 35 (1997) 157–164.
  39. Sutisna, M. Rokhmat, E. Wibowo, Khairurrijal, M. Abdullah, Prototype of a flat-panel photoreactor using TiO2 nanoparticles coated on transparent granules for the degradation of Methylene Blue under solar illumination, Sustainable Environ. Res., 27 (2017) 172–180.
  40. C. Casado, Á. García-Gil, R. van Grieken, J. Marugán, Critical role of the light spectrum on the simulation of solar photocatalytic reactors, Appl. Catal., B, 252 (2019) 1–9.
  41. L. Onotri, M. Race, L. Clarizia, M. Guida, M. Alfè, R. Andreozzi, R. Marotta, Solar photocatalytic processes for treatment of soil washing wastewater, Chem. Eng. J., 318 (2017) 10–18.
  42. L. Aoudjit, P.M. Martins, F. Madjene, D.Y. Petrovykh, S. Lanceros-Mendez, Photocatalytic reusable membranes for the effective degradation of tartrazine with a solar photoreactor, J. Hazard. Mater., 344 (2018) 408–416.
  43. K. Sofía Ochoa-Gutiérrez, E. Tabares-Aguilar, M. Ángel Mueses, F. Machuca-Martínez, G.L. Puma, A novel prototype offset multi tubular photoreactor (OMTP) for solar photocatalytic degradation of water contaminants, Chem. Eng. J., 341 (2018) 628–638.
  44. P. Jain, M. Sharma, P. Dureja, P.M. Sarma, B. Lal, Bioelectrochemical approaches for removal of sulfate, hydrocarbon and salinity from produced water, Chemosphere, 166 (2017) 96–108.
  45. D. Suryaman, K. Hasegawa, Biological and photocatalytic treatment integrated with separation and reuse of titanium dioxide on the removal of chlorophenols in tap water, J. Hazard. Mater., 183 (2010) 490–496.
  46. M.P. Shah, Combined application of biological-photocatalytic process in degradation of reactive black dye: an excellent outcome, Am. J. Microbiol. Res., 4 (2013) 92–97.
  47. M.P. Reddy, B. Srinivas, V.D. Kumari, M. Subrahmanyam, P.N. Sharma, An integrated approach of solar photocatalytic and biological treatment of N-containing organic compounds in wastewater, Toxicol. Environ. Chem., 86 (2004) 127–140.
  48. A. Baiju, R. Gandhimathi, S.T. Ramesh, P.V. Nidheesh, Combined heterogeneous Electro-Fenton and biological process for the treatment of stabilized landfill leachate, J. Environ. Manage., 210 (2018) 328–337.
  49. F. Martínez, R. Molina, I. Rodríguez, M.I. Pariente, Y. Segura, J.A. Melero, Techno-economical assessment of coupling Fenton/biological processes for the treatment of a pharmaceutical wastewater, J. Environ. Chem. Eng., 6 (2019) 485–494.
  50. C.Y. Chan, H.S. Chan, P.K. Wong, Integrated photocatalyticbiological treatment of triazine-containing pollutants, Chemosphere, 222 (2019) 371–380.
  51. V. Bhatia, A. Dhir, A.K. Ray, Integration of photocatalytic and biological processes for treatment of pharmaceutical effluent, J. Photochem. Photobiol., A, 364 (2018) 322–327.
  52. M. Wu, J. Deng, J. Li, Y. Li, J. Li, H. Xu, Simultaneous biologicalphotocatalytic treatment with strain CDS-8 and TiO2 for chlorothalonil removal from liquid and soil, J. Hazard. Mater., 320 (2016) 612–619.
  53. Y.M. Zhang, L. Wang, B.E. Rittmann, Integrated photocatalyticbiological reactor for accelerated phenol mineralization, Appl. Microbiol. Biotechnol., 86 (2010) 1977–1985.
  54. E.-S. Kim, G. Hwang, M.G. El-Din, Y. Liu, Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment, J. Membr. Sci., 394–395 (2012) 37–48.
  55. M.D. Marsolek, M.J. Kirisits, K.A. Gray, B.E. Rittmann, Coupled photocatalytic-biodegradation of 2,4,5-trichlorophenol: effects of photolytic and photocatalytic effluent composition on bioreactor process performance, community diversity, and resistance and resilience to perturbation, Water Res. , 50 (2014) 59–69.
  56. A.R. Pendashteh, L.C. Abdullah, A. Fakhru’l-Razi, S.S. Madaeni, Z.Z. Abidin, D.R.A. Biak, Evaluation of membrane bioreactor for hypersaline oily wastewater treatment, Process Saf. Environ. Prot., 90 (2012) 45–55.
  57. M. Delnavaz, Photo catalysis of Wastewater Containing Phenol mediated by Nano TiO2 Fixed to Concrete Surfaces, Department of Environmental Engineering & Faculty of Civil and Environmental Engineering, Tarbiat Modares University, 2011.
  58. M. Delnavaz, B. Ayati, H. Ganjidoust, S. Sanjabi, Kinetics study of photocatalytic process for treatment of phenolic wastewater by TiO2 nano powder immobilized on concrete surfaces, Toxicol. Environ. Chem., 94 (2012) 1086–1098.
  59. E.W. Rice, R.B. Baird, A.D. Eaton, Standard Methods for the Examination of Water & Wastewater, American Public Health Association, American Water Works Association, and Water Environment Federation, USA, 2017.
  60. D.D.C. Freire, G.L. Sant’Anna, A proposed method modification for the determination of cod in saline waters, Environ. Technol., 19 (1998) 1243–1247.
  61. D.D.C. Freire, M.C. Cammarota, G.L. Sant’Anna, Biological treatment of oil field wastewater in a sequencing batch reactor, Environ. Technol., 22 (2001) 1125–1135.
  62. Standard Method for Examination of Water and Wastewater, 19th ed., APHA, AWWA, WEF, Washington, D.C., USA, 2005.
  63. M. Alizadeh, S.M. Sadrameli, Indoor thermal comfort assessment using PCM based storage system integrated with ceiling fan ventilation: experimental design and response surface approach, Energy Build., 188–189 (2019) 297–313.
  64. M. Alizadeh, S.M. Sadrameli, Numerical modeling and optimization of thermal comfort in building: central composite design and CFD simulation, Energy Build., 164 (2018) 187–202.
  65. Z. Ghasemi, H. Younesi, A.A. Zinatizadeh, Preparation, characterization and photocatalytic application of TiO2/Fe-ZSM-5 nanocomposite for the treatment of petroleum refinery wastewater: optimization of process parameters by response surface methodology, Chemosphere, 159 (2016) 552–564.
  66. S. Khodadoust, A. Sheini, N. Armand, Photocatalytic degradation of monoethanolamine in wastewater using nanosized TiO2 loaded on clinoptilolite, Spectrochim. Acta, Part A, 92 (2012) 91–95.
  67. S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, M.A. Hashib, Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments, Desalination, 261 (2010) 3–18.
  68. C.-H. Chiou, R.-S. Juang, Photocatalytic degradation of phenol in aqueous solutions by Pr-doped TiO2 nanoparticles, J. Hazard. Mater., 149 (2007) 1–7.
  69. J. Saien, H. Nejati, Enhanced photocatalytic degradation of pollutants in petroleum refinery wastewater under mild conditions, J. Hazard. Mater., 148 (2007) 491–495.
  70. A. Aleboyeh, Y. Moussa, H. Aleboyeh, The effect of operational parameters on UV/H2O2 decolourisation of Acid Blue 74, Dyes Pigm., 66 (2005) 129–132.
  71. C.C. Wong, W. Chu, The hydrogen peroxide-assisted photocatalytic degradation of alachlor in TiO2 suspensions, Environ. Sci. Technol., 37 (2003) 2310–2316.
  72. D.-H. Tseng, L.-C. Juang, H.-H. Huang, Effect of oxygen and hydrogen peroxide on the photocatalytic degradation of monochlorobenzene in TiO2 aqueous suspension, Int. J. Photoenergy, 2012 (2012) 9 p, http://dx.doi.org/10.1155/2012/328526.
  73. D.D. Dionysiou, M.T. Suidan, E. Bekou, I. Baudin, J.M. Laı̂né, Effect of ionic strength and hydrogen peroxide on the photocatalytic degradation of 4-chlorobenzoic acid in water, Appl. Catal., B, 26 (2000) 153–171.
  74. Y.J. Zang, R. Farnood, Effect of hydrogen peroxide on the photocatalytic degradation of methyl tert-butyl ether, Top. Catal., 37 (2006) 91–96.
  75. I. Talinli, G.K. Anderson, Interference of hydrogen peroxide on the standard COD test, Water Res., 26 (1992) 107–110.
  76. Y.K. Abdel-Maksoud, E. Imam, A. Ramadan, TiO2 solar photocatalytic reactor systems: selection of reactor design for scale-up and commercialization, Catalysts, 6 (2016) 138–142.