References
- F.M.D. Chequer, T.M. Lizier, R. de Felício, M.V.B. Zanoni,
H.M. Debonsi, N.P. Lopes, D.P. de Oliveira, The azo dye Disperse
Red 13 and its oxidation and reduction products showed
mutagenic potential, Toxicol. in Vitro, 29 (2015) 1906–1915.
- S. Munirasu, M.A. Haija, F. Banat, Use of membrane technology
for oil field and refinery produced water treatment—a review,
Process Saf. Environ. Prot., 100 (2016) 183–202.
- S. Judd, H. Qiblawey, M. Al-Marri, C. Clarkin, S. Watson,
A. Ahmed, S. Bach, The size and performance of offshore
produced water oil-removal technologies for reinjection, Sep.
Purif. Technol., 134 (2014) 241–246.
- F.-R. Ahmadun, A. Pendashteh, L.C. Abdullah, D.R.A. Biak,
S.S. Madaeni, Z.Z. Abidin, Review of technologies for oil and
gas produced water treatment, J. Hazard. Mater., 170 (2009)
530–551.
- H. Mirbolooki, R. Amirnezhad, A.R. Pendashteh, Treatment
of high saline textile wastewater by activated sludge
microorganisms, J. Appl. Res. Technol., 15 (2017) 167–172.
- A.R. Pendashteh, A. Fakhru’l-Razi, N. Chaibakhsh,
L.C. Abdullah, S.S. Madaeni, Z.Z. Abidin, Modeling of
membrane bioreactor treating hypersaline oily wastewater by
artificial neural network, J. Hazard. Mater., 192 (2011) 568–575.
- A. Fakhru’l-Razi, A. Pendashteh, Z.Z. Abidin, L.C. Abdullah,
D.R.A. Biak, S.S. Madaeni, Application of membrane-coupled
sequencing batch reactor for oilfield produced water recycle
and beneficial re-use, Bioresour. Technol., 101 (2010) 6942–6949.
- D.H. Doyle, A.B. Brown, Produced Water Treatment and
Hydrocarbon Removal with Organoclay, SPE Annual Technical
Conference and Exhibition, Dallas, Texas, USA, 2000.
- R.M. Allen, R. Keith, Environmental Aspects of Produced Water
Disposal, Paper Presented at the Middle East Oil Show, Society
of Petroleum Engineers, Bahrain, 1993.
- R. Kendmark, M. Norozi, A. Rezaie, Biological treatment for
produced water: a state of art, Environ. Toxicol. Chem., 89 (2014)
36–42.
- S. Jiménez, M.M. Micó, M. Arnaldos, F. Medin, S. Contreras,
State of the art of produced water treatment, Chemosphere, 192
(2018) 186–208.
- B. Long, C.-z. Yang, W.-h. Pu, J.-k. Yang, F.-b. Liu, L. Zhang,
J. Zhang, K. Cheng, Tolerance to organic loading rate by aerobic
granular sludge in a cyclic aerobic granular reactor, Bioresour.
Technol., 182 (2015) 314–322.
- N.H. Rosman, A.N. Anuar, S. Chelliapan, M.F.M. Din, Z. Ujang,
Characteristics and performance of aerobic granular sludge
treating rubber wastewater at different hydraulic retention
time, Bioresour. Technol., 161 (2014) 155–161.
- B.-J. Ni, Formation, Characterization and Mathematical
Modeling of the Aerobic Granular Sludge, Springer Theses,
2013, pp. 1–25.
- W.Q. Xue, T.W. Hao, H.R. Mackey, X.L. Li, R.C. Chan,
G.H. Chen, The role of sulfate in aerobic granular sludge process
for emerging sulfate-laden wastewater treatment, Water Res.,
124 (2017) 513–520.
- S. López-Palau, A. Pinto, N. Basset, J. Dosta, J. Mata-Álvarez,
ORP slope and feast–famine strategy as the basis of the
control of a granular sequencing batch reactor treating winery
wastewater, Biochem. Eng. J., 68 (2012) 190–198.
- Q.L. He, W. Zhang, S.L. Zhang, Z.C. Zou, H.Y. Wang,
Performance and microbial population dynamics during stable
operation and reactivation after extended idle conditions in an
aerobic granular sequencing batch reactor, Bioresour. Technol.,
238 (2017) 116–121.
- Z.W. Wang, M.C.M. van Loosdrecht, P.E. Saikaly, Gradual
adaptation to salt and dissolved oxygen: strategies to minimize
adverse effect of salinity on aerobic granular sludge, Water Res.,
124 (2017) 702–712.
- T. Moustafa, Aerobic Granular Sludge – Study of Applications
for Industrial and Domestic Wastewater, Master’s Thesis,
Department of Civil and Environmental Engineering,
University of Göteborg, Sweden, 2014, p. 85.
- S.F. Corsino, R. Campo, G. Di Bella, M. Torregrossa, G. Viviani,
Aerobic granular sludge treating shipboard slop: analysis of
total petroleum hydrocarbons loading rates on performances
and stability, Process Biochem., 65 (2018) 164–171.
- G. Di Bella, M. Torregrossa, Aerobic granular sludge for leachate
treatment, J. Chem. Eng. Trans., 38 (2014) 493–498.
- I. Oller, S. Malato, J.A. Sánchez-Pérez, Combination of advanced
oxidation processes and biological treatments for wastewater
decontamination—a review, Sci. Total Environ., 409 (2011)
4141–4166.
- J.J. Yuan, X.K. Zhang, H.D. Li, K. Wang, S.Y. Gao, Z. Yin, H.J. Yu,
X.R. Zhu, Z.Z. Xiong, Y.M. Xie, TiO2/SnO2 double-shelled hollow
spheres-highly efficient photocatalyst for the degradation of
rhodamine B, Catal. Commun., 60 (2015) 129–133.
- A.J. Albrbar, A. Bjelajac, V. Đjokić, J. Miladinović, D. Janaćković,
R. Petrović, Photocatalytic efficiency of titania photocatalysts in
saline waters, J. Serb. Chem. Soc., 79 (2014) 1127–1140.
- R. Nadarajan, W.A.W.A. Bakar, R. Ali, R. Ismail, Photocatalytic
degradation of 1,2-dichlorobenzene using immobilized TiO2/SnO2/WO3 photocatalyst under visible light: application of
response surface methodology, Arabian J. Chem., 11 (2018) 34–47.
- S. Malato, J. Blanco, J. Cáceres, A.R. Fernández-Alba, A. Agüera,
A. Rodríguez, Photocatalytic treatment of water-soluble
pesticides by photo-Fenton and TiO2 using solar energy, Catal.
Today, 76 (2002) 209–220.
- S. Malato, J. Blanco, D.C. Alarcón, M.I. Maldonado,
P. Fernández-Ibáñez, W. Gernjak, Photocatalytic
decontamination and disinfection of water with solar collectors,
Catal. Today, 122 (2007) 137–149.
- S. Malato, P. Fernández-Ibanez, M.I. Maldonado, J. Blanco,
W. Gernjak, Decontamination and disinfection of water by solar
photocatalysis: recent overview and trends, Catal. Today, 147
(2009) 1–59.
- S. Malato, J. Blanco, A. Vidal, D. Alarcón, M.I. Maldonado,
J. Cáceres, W.G. Gernjak, Applied studies in solar photocatalytic
detoxification: an overview, Sol. Energy, 75 (2013) 329–336.
- C. Minero, E. Pelizzetti, S. Malato, J. Blanco, Large solar
plant photocatalytic water decontamination: degradation of
pentachlorophenol, Chemosphere, 26 (1993) 2103–2119.
- W. Gernjak, M.L. Maldonado, S. Malato, J. Cáceres, T. Krutzler,
A. Glaser, R. Bauer, Pilot-plant treatment of olive mill
wastewater (OMW) by solar TiO2 photocatalysis and solar
photo-Fenton, Sol. Energy, 77 (2004) 567–572.
- A. Vidal, A.I. Díaz, A. El Hraiki, M. Romero, I. Muguruza,
F. Senhaji, J. González, Solar photocatalysis for detoxification
and disinfection of contaminated water: pilot plant studies,
Catal. Today, 54 (1999) 283–290.
- M.C. Liu, D.W. Jing, L. Zhao, L.J. Guo, Preparation of novel
CdS-incorporated special glass composite as photocatalyst
material used for catalyst-fixed system, Int. J. Hydrogen Energy,
35 (2010) 7058–7064.
- D.W. Jing, H. Liu, X.H. Zhang, L. Zhao, L.J. Guo, Photocatalytic
hydrogen production under direct solar light in a CPC based
solar reactor: reactor design and preliminary results, Energy
Convers. Manage., 50 (2009) 2919–2926.
- F. Cao, Q.Y. Wei, H. Liu, N. Lu, L. Zhao, L.J. Guo, Development
of the direct solar photocatalytic water splitting system
for hydrogen production in Northwest China: design and
evaluation of photoreactor, Renewable Energy, 121 (2018)
153–163.
- Q.Y. Wei, Y. Yang, J.Y. Hou, H. Liu, F. Cao, L. Zhao, Direct solar
photocatalytic hydrogen generation with CPC photoreactors:
system development, Sol. Energy, 153 (2017) 215–223.
- S. Malato, J. Blanco, A. Vidal, C. Richter, Photocatalysis with
solar energy at a pilot-plant scale: an overview, Appl. Catal.,
B, 37 (2002) 1–15.
- S. Malato, J. Blanco, C. Richter, D. Curcó, J. Giménez, Lowconcentrating
CPC collectors for photocatalytic water
detoxification: comparison with a medium concentrating solar
collector, Water Sci. Technol., 35 (1997) 157–164.
- Sutisna, M. Rokhmat, E. Wibowo, Khairurrijal, M. Abdullah,
Prototype of a flat-panel photoreactor using TiO2 nanoparticles
coated on transparent granules for the degradation of
Methylene Blue under solar illumination, Sustainable Environ.
Res., 27 (2017) 172–180.
- C. Casado, Á. García-Gil, R. van Grieken, J. Marugán,
Critical role of the light spectrum on the simulation of solar
photocatalytic reactors, Appl. Catal., B, 252 (2019) 1–9.
- L. Onotri, M. Race, L. Clarizia, M. Guida, M. Alfè, R. Andreozzi,
R. Marotta, Solar photocatalytic processes for treatment of soil
washing wastewater, Chem. Eng. J., 318 (2017) 10–18.
- L. Aoudjit, P.M. Martins, F. Madjene, D.Y. Petrovykh,
S. Lanceros-Mendez, Photocatalytic reusable membranes for
the effective degradation of tartrazine with a solar photoreactor,
J. Hazard. Mater., 344 (2018) 408–416.
- K. Sofía Ochoa-Gutiérrez, E. Tabares-Aguilar, M. Ángel Mueses,
F. Machuca-Martínez, G.L. Puma, A novel prototype offset
multi tubular photoreactor (OMTP) for solar photocatalytic
degradation of water contaminants, Chem. Eng. J., 341 (2018)
628–638.
- P. Jain, M. Sharma, P. Dureja, P.M. Sarma, B. Lal,
Bioelectrochemical approaches for removal of sulfate,
hydrocarbon and salinity from produced water, Chemosphere,
166 (2017) 96–108.
- D. Suryaman, K. Hasegawa, Biological and photocatalytic
treatment integrated with separation and reuse of titanium
dioxide on the removal of chlorophenols in tap water, J. Hazard.
Mater., 183 (2010) 490–496.
- M.P. Shah, Combined application of biological-photocatalytic
process in degradation of reactive black dye: an excellent
outcome, Am. J. Microbiol. Res., 4 (2013) 92–97.
- M.P. Reddy, B. Srinivas, V.D. Kumari, M. Subrahmanyam,
P.N. Sharma, An integrated approach of solar photocatalytic
and biological treatment of N-containing organic compounds
in wastewater, Toxicol. Environ. Chem., 86 (2004) 127–140.
- A. Baiju, R. Gandhimathi, S.T. Ramesh, P.V. Nidheesh, Combined
heterogeneous Electro-Fenton and biological process for the
treatment of stabilized landfill leachate, J. Environ. Manage.,
210 (2018) 328–337.
- F. Martínez, R. Molina, I. Rodríguez, M.I. Pariente, Y. Segura,
J.A. Melero, Techno-economical assessment of coupling Fenton/biological processes for the treatment of a pharmaceutical
wastewater, J. Environ. Chem. Eng., 6 (2019) 485–494.
- C.Y. Chan, H.S. Chan, P.K. Wong, Integrated photocatalyticbiological
treatment of triazine-containing pollutants,
Chemosphere, 222 (2019) 371–380.
- V. Bhatia, A. Dhir, A.K. Ray, Integration of photocatalytic and
biological processes for treatment of pharmaceutical effluent,
J. Photochem. Photobiol., A, 364 (2018) 322–327.
- M. Wu, J. Deng, J. Li, Y. Li, J. Li, H. Xu, Simultaneous biologicalphotocatalytic
treatment with strain CDS-8 and TiO2 for
chlorothalonil removal from liquid and soil, J. Hazard. Mater.,
320 (2016) 612–619.
- Y.M. Zhang, L. Wang, B.E. Rittmann, Integrated photocatalyticbiological
reactor for accelerated phenol mineralization, Appl.
Microbiol. Biotechnol., 86 (2010) 1977–1985.
- E.-S. Kim, G. Hwang, M.G. El-Din, Y. Liu, Development of
nanosilver and multi-walled carbon nanotubes thin-film
nanocomposite membrane for enhanced water treatment,
J. Membr. Sci., 394–395 (2012) 37–48.
- M.D. Marsolek, M.J. Kirisits, K.A. Gray, B.E. Rittmann, Coupled
photocatalytic-biodegradation of 2,4,5-trichlorophenol: effects
of photolytic and photocatalytic effluent composition on
bioreactor process performance, community diversity, and
resistance and resilience to perturbation, Water Res. , 50 (2014)
59–69.
- A.R. Pendashteh, L.C. Abdullah, A. Fakhru’l-Razi, S.S. Madaeni,
Z.Z. Abidin, D.R.A. Biak, Evaluation of membrane bioreactor
for hypersaline oily wastewater treatment, Process Saf. Environ.
Prot., 90 (2012) 45–55.
- M. Delnavaz, Photo catalysis of Wastewater Containing
Phenol mediated by Nano TiO2 Fixed to Concrete Surfaces,
Department of Environmental Engineering & Faculty of Civil
and Environmental Engineering, Tarbiat Modares University,
2011.
- M. Delnavaz, B. Ayati, H. Ganjidoust, S. Sanjabi, Kinetics study
of photocatalytic process for treatment of phenolic wastewater
by TiO2 nano powder immobilized on concrete surfaces,
Toxicol. Environ. Chem., 94 (2012) 1086–1098.
- E.W. Rice, R.B. Baird, A.D. Eaton, Standard Methods for the
Examination of Water & Wastewater, American Public Health
Association, American Water Works Association, and Water
Environment Federation, USA, 2017.
- D.D.C. Freire, G.L. Sant’Anna, A proposed method modification
for the determination of cod in saline waters, Environ. Technol.,
19 (1998) 1243–1247.
- D.D.C. Freire, M.C. Cammarota, G.L. Sant’Anna, Biological
treatment of oil field wastewater in a sequencing batch reactor,
Environ. Technol., 22 (2001) 1125–1135.
- Standard Method for Examination of Water and Wastewater,
19th ed., APHA, AWWA, WEF, Washington, D.C., USA, 2005.
- M. Alizadeh, S.M. Sadrameli, Indoor thermal comfort
assessment using PCM based storage system integrated with
ceiling fan ventilation: experimental design and response
surface approach, Energy Build., 188–189 (2019) 297–313.
- M. Alizadeh, S.M. Sadrameli, Numerical modeling and
optimization of thermal comfort in building: central composite
design and CFD simulation, Energy Build., 164 (2018) 187–202.
- Z. Ghasemi, H. Younesi, A.A. Zinatizadeh, Preparation,
characterization and photocatalytic application of TiO2/Fe-ZSM-5 nanocomposite for the treatment of petroleum
refinery wastewater: optimization of process parameters by
response surface methodology, Chemosphere, 159 (2016)
552–564.
- S. Khodadoust, A. Sheini, N. Armand, Photocatalytic
degradation of monoethanolamine in wastewater using
nanosized TiO2 loaded on clinoptilolite, Spectrochim. Acta, Part
A, 92 (2012) 91–95.
- S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, M.A. Hashib,
Heterogeneous photocatalytic degradation of phenols in
wastewater: a review on current status and developments,
Desalination, 261 (2010) 3–18.
- C.-H. Chiou, R.-S. Juang, Photocatalytic degradation of phenol
in aqueous solutions by Pr-doped TiO2 nanoparticles, J. Hazard.
Mater., 149 (2007) 1–7.
- J. Saien, H. Nejati, Enhanced photocatalytic degradation
of pollutants in petroleum refinery wastewater under mild
conditions, J. Hazard. Mater., 148 (2007) 491–495.
- A. Aleboyeh, Y. Moussa, H. Aleboyeh, The effect of operational
parameters on UV/H2O2 decolourisation of Acid Blue 74, Dyes
Pigm., 66 (2005) 129–132.
- C.C. Wong, W. Chu, The hydrogen peroxide-assisted
photocatalytic degradation of alachlor in TiO2 suspensions,
Environ. Sci. Technol., 37 (2003) 2310–2316.
- D.-H. Tseng, L.-C. Juang, H.-H. Huang, Effect of oxygen
and hydrogen peroxide on the photocatalytic degradation
of monochlorobenzene in TiO2 aqueous suspension,
Int. J. Photoenergy, 2012 (2012) 9 p, http://dx.doi.org/10.1155/2012/328526.
- D.D. Dionysiou, M.T. Suidan, E. Bekou, I. Baudin,
J.M. Laı̂né, Effect of ionic strength and hydrogen peroxide on
the photocatalytic degradation of 4-chlorobenzoic acid in water,
Appl. Catal., B, 26 (2000) 153–171.
- Y.J. Zang, R. Farnood, Effect of hydrogen peroxide on the
photocatalytic degradation of methyl tert-butyl ether, Top.
Catal., 37 (2006) 91–96.
- I. Talinli, G.K. Anderson, Interference of hydrogen peroxide on
the standard COD test, Water Res., 26 (1992) 107–110.
- Y.K. Abdel-Maksoud, E. Imam, A. Ramadan, TiO2 solar
photocatalytic reactor systems: selection of reactor design for
scale-up and commercialization, Catalysts, 6 (2016) 138–142.