References

  1. Y. Li, X. Hu, X. Liu, Y. Zhang, Q. Zhao, P. Ning, S. Tian, Adsorption behavior of phenol by reversible surfactantmodified montmorillonite: mechanism thermodynamics and regeneration, Chem. Eng. J., 334 (2018) 1214–1221.
  2. H. Niu, Y. Zheng, S. Wang, L. Zhao, S. Yang, Y. Cai, Continuous generation of hydroxyl radicals for highly efficient elimination of chlorophenols and phenols catalyzed by heterogeneous Fenton-like catalysts yolk/shell Pd@Fe3O4@metal organic frameworks, J. Hazard. Mater., 346 (2018) 174–183.
  3. B. Shah, R. Tailor, A. Shah, Sorptive sequestration of 2-chlorophenol by zeolitic materials derived from bagasse fly ash, J. Chem. Technol. Biotechnol., 86 (2011) 1265–1275.
  4. R.L. Tseng, K.T. Wu, F.C. Wu, R.S. Juang, Kinetic studies on the adsorption of phenol, 4-chlorophenol and 2,4-dichlorophenol from water using activated carbons, J. Environ. Manage., 91 (2010) 2208–2214.
  5. X. Li, Y. Houa, Q. Zhaoa, W. Tenga, X. Hua, G. Chen, Capability of novel ZnFe2O4 nanotube arrays for visible-light induced degradation of 4-chlorophenol, J. Chemo., 82 (2011) 581–586.
  6. N. Roostaei, F.H. Tezel, Removal of phenol from aqueous solutions by adsorption, J. Environ. Manage., 70 (2004) 157–164.
  7. M.H. Entezari, C. Petrier, P. Devidal, Sonochemical degradation of phenol in water: a comparison of classical equipment with a new cylindrical reactor, Ultrason. Sonochem., 10 (2003) 103–108.
  8. O. Hamdaoui, E. Naffrechoux, Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon, part I: two-parameter models and equations allowing determination of thermodynamic parameters, J. Hazard. Mater., 147 (2007) 381–394.
  9. S. Xue, C. Wang, Y. Wei, Preparation of magnetic mesoporous carbon from polystyrene-grafted magnetic nanoparticles for rapid extraction of chlorophenols from water samples, RSC Adv., 7 (2017) 11921–11928.
  10. M.A. Salam, M. Mokhtar, S.N. Basahel, S.A. Al-Thabaiti, A.Y. Obaid, Removal of chlorophenol from aqueous solutions by multiwalled carbon nanotubes: kinetic and thermodynamic studies, J. Alloys Compd., 500 (2010) 87–92.
  11. K. Abburi, Adsorption of phenol and p-chlorophenol from their single and bisolute aqueous solutions on amberlite XAD-16 resin, J. Hazard. Mater., 105 (2003) 143–156.
  12. A. Ghaffari, S.M. Tehrani, S.W. Husain, M. Anbia, P.A. Azar, Adsorption of chlorophenols from aqueous solution over amino-modified ordered nanoporous silica materials, J. Nanostruct. Chem., 4 (2014) 1–10.
  13. A. Adewuyi, A. Gopfert, O.A. Adewuyi, T. Wolff, Adsorption of 2-chlorophenolonto the surface of underutilized seed of Adenopus breviflorus: a potential means of treating waste water, J. Environ. Chem. Eng., 4 (2016) 664–672.
  14. A.E. Navarro, N.A. Cuizano, R.F. Portales, B.P. Llanos, Adsorptive removal of 2-nitrophenol and 2-chlorophenol by cross-linked Algae from aqueous solutions, Sep. Sci. Technol., 43 (2008) 3183–3199.
  15. M.K. Alam, M.M. Rahman, M. Abbas, S.R. Torati, A.M. Asiri, D. Kim, C.G. Kim, Ultra-sensitive 2-nitrophenol detection based on reduced grapheme oxide/ZnO nanocomposites, J. Electroanal. Chem., 788 (2017) 66–73.
  16. E. Abroushan, S. Farhadi, A. Zabardasti, Ag3PO4/CoFe2O4 magnetic nanocomposite: synthesis, characterization and applications in catalytic reduction of nitrophenols and sunlightassisted photocatalytic degradation of organic dye pollutants, RSC Adv., 7 (2017) 18293–18304.
  17. E. Bazrafshan, A.H. Mahvi, S. Nasseri, M. Shaieghi, Performance evaluation of electrocoagulation process for diazinon removal from aqueous environments by using iron electrodes, J. Environ. Health Sci. Eng., 4 (2007) 127–132.
  18. A.H. Mahvi, Application of ultrasonic technology for water and wastewater treatment, Iran J. Public Health, 38 (2009) 1–17.
  19. A. Maleki, A.H. Mahvi, A. Mesdaghinia, K. Naddafi, Degradation and toxicity reduction of phenol by ultrasound waves, Bull. Chem. Soc. Ethiop., 21 (2007) 33–38.
  20. A.B. Pandit, P.R. Gogate, S. Mujumdar, Ultrasonic degradation of 2:4:6 trichlorophenol in presence of TiO2 catalyst, Ultrason. Sonochem., 8 (2001) 227–231.
  21. X. Mao, I.D. Buchanan, S.J. Stanley, Phenol removal from aqueous solution by fungal peroxidises, J. Environ. Eng. Sci., 5 (2006) 103–109.
  22. A.H. Mahvi, A. Maleki, M. Ali Mohamadi, A. Ghasri, Photooxidation of phenol in aqueous solution: toxicity of intermediates, Korean J. Chem. Eng., 24 (2007) 79–82.
  23. R.A.D. Tilaki, M.A. Zazooli, J. Yazdani, M.A. Ghaliloo, E. Rostamali, Degradation of 4-chlorophenol by sunlight using catalyst of zinc oxide, J. Mazandaran Univ. Med. Sci., 23 (2014) 196–201.
  24. Y.Q. Wang, B. Gu, W.L. Xu, Electro-catalytic degradation of phenol on several metal oxide anodes, J. Hazard. Mater., 162 (2009) 1159–1164.
  25. M. Li, C. Feng, W. Hu, Z. Zhang, N. Sugiura, Electrochemical degradation of phenol using electrodes of Ti/RuO2-Pt and Ti/IrO2-Pt, J. Hazard. Mater., 162 (2009) 455–462.
  26. C. Yang, Y. Qian, L. Zhang, J. Feng, Solvent extraction process development and on- site trial-plant for phenol removal from industrial coal-gasification wastewater, Chem. Eng., 117 (2006) 179–185.
  27. M. Caetano, C. Valderrama, A. Farran, J.L. Cortina, Phenol removal from aqueous solution by adsorption and ion exchange mechanisms onto polymeric resins, J. Colloid Interface Sci., 338 (2009) 402–409.
  28. B. Abussaud, H.A. Asmaly, T.A. Saleh, V.K. Gupta, T. Laoui, M.A. Atieh, Sorption of phenol from water on activated carbon impregnated with iron oxide, aluminum oxide and titanium oxide, J. Mol. Liq., 213 (2016) 351–359.
  29. S.M. Anisuzzaman, A. Bono, D. Krishnaiah, Y.Z. Tan, A study on dynamic simulation of phenol adsorption in activated carbon packed bed column, J. King Saud Univ. Eng. Sci., 28 (2016) 47–55.
  30. S.M. Alshehri, M. Naushad, T. Ahamad, Z.A. Alothman, A. Aldalbahi, Synthesis, characterization of curcumin based ecofriendly antimicrobial bio-adsorbent for the removal of phenol from aqueous medium, Chem. Eng. J., 254 (2014) 181–189.
  31. K. Singh, V.K. Singh, S.K. Verma, R. Bharose, A. Suman, Characterization of modified polypropylene powder (Accurel) and its use for adsorption of phenolics from aqueous solution, Ind. J. Chem. Technol., 20 (2013) 385–391.
  32. K. Singh, S.K. Verma, R. Bharose, Powdered activated mustard cake (PAMC): Synthesis, characterization and its use for aqueous phase adsorption of phenolics, J. Indian Chem. Soc. ICS, 91 (2014) 483–496.
  33. K. Singh, B. Chandra, Adsorption behaviours of phenols onto high specific area activated carbon derived from Trapabispinosa, Ind. J. Chem. Technol., 22 (2015) 11–19.
  34. K. Singh, B. Chandra, Adsorption behaviours of phenols onto modified activated carbon ECH derived from an agriculture waste (Eleusinecoracana husk), Ind. J. Chem. Technol., 92 (2015) 355.
  35. K. Singh, B. Chandra, M. Gautam, Development of inexpensive adsorbent from agro waste for phenol adsorption, JSIR, 75 (2016) 444–451.
  36. A. Kumar, M. Naushad, A. Rana, Inamuddin, Preeti, G. Sharma, A.A. Ghfar, F.J. Stadler, M.R. Khan, ZnSe-WO3 nano-hetero assembly stacked on Gum ghatti for photo-degradative removal of Bisphenol A: symbiose of adsorption and photocatalysis, Int. J. Biol. Macromol., 104 (2017) 1172–1184.
  37. P. Dhiman, M. Naushad, K.M. Batoo, A. Kumar, G. Sharma, A.A. Ghfar, G. Kumar, M. Singh, Nano FexZn1−xO as a tuneable and efficient photocatalyst for solar powered degradation of bisphenol A from aqueous environment, J. Clean. Prod., 165 (2017) 1542–1556.
  38. A. Kumar, A. Kumar, G. Sharma, A.H. Al-Muhtaseb, M. Naushad, A.A. Ghfar, C. Guo, F.J. Stadler, Biochar-templated g-C3N4/Bi2O2CO3/CoFe2O4 nano-assembly for visible and solar assisted photo-degradation of paraquat, nitrophenol reduction and CO2 conversion, Chem. Eng. J., 339 (2018) 393–410.
  39. A.A. Al-Kahtani, T. Almuqati, N. Alhokbany, T. Ahamad, M. Naushad, S.M. Alshehri, A clean approach for the reduction of hazardous 4-nitrophenol using gold nanoparticles decorated multiwalled carbon nanotubes, J. Clean. Prod., 191 (2018) 429–435.
  40. A.M. Peiro, J.A. Ayllón, J. Peral, X. Doménech, TiO2-photocatalyzed degradation of phenol and ortho-substituted phenolic compounds, Appl. Catal., B, 30 (2001) 359–373.
  41. S. Chen, Z.P. Xu, Q. Zhang, G.Q. Max Lu, Z.P. Hao, S. Liu, Studies on adsorption of phenol and 4-nitrophenol on MgAl-mixed oxide derived from MgAl-layered double hydroxide, Sep. Purif. Technol., 67 (2009) 194–200.
  42. A. Ragavan, A.I. Khan, D.O. Hare, Isomer selective ionexchange intercalation of nitrophenolates into the layered double hydroxide [LiAl2(OH)6] Cl·xH2O, J. Mater. Chem., 16 (2006) 602–608.
  43. W. Wang, J. Zhang, F. Chen, D. He, M. Anpo, Preparation and photocatalytic properties of Fe3+-doped Ag@TiO2 core-shell nanoparticles, J. Colloid Interface Sci., 323 (2008) 182–186.
  44. S.A. Shahid, A. Nafady, I. Ullah, H. Yun, T. Yap, I. Shakir, F. Anwar, U. Rashid, Characterization of newly synthesized ZrFe2O5 nanomaterial and investigations of its tremendous photocatalytic properties under visible light irradiation, J. Nanomat., 2013 (2013) 1–6.
  45. K.P. Govind Mallan, A. Jain, S. Gayathri, S. Kalainathan, Preparation and magnetic properties of nano size zirconium ferrite particles using co precipitation method, Chem. Technol. Res., 6 (2014) 2187–2189.
  46. X. Dou, G.C. Wang, M. Zhu, F. Liu, W. Li, M. Dinesh, C.U.P. Jr, Identification of Fe and Zr oxide phases in an iron-zirconium binary oxide and arsenate complexes adsorbed onto their surfaces, J. Hazard. Mater., 353 (2018) 1–29.
  47. K. Gupta, K. Biswas, U.C. Ghosh, Nanostructure Fe(III)- Zr(IV) binary mixed oxide: synthesis, characterization, and physicochemical aspects of As(III) sorption from the aqueous solution, J. Ind. Eng. Chem. Res., 4 (2008) 9903–9912.
  48. K. Gupta, T. Basu, U.C. Ghosh, Sorption characteristics of arsenic (v) for removal from water using agglomerated nanostructure Fe(III)-Zr(IV) bimetal mixed oxide, J. Chem. Eng., 54 (2009) 2222–2228.
  49. Z. Ren, G. Zhang, J.P. Chen, Adsorptive removal of arsenic from water by an iron–zirconium binary oxide adsorbent, J. Colloid Interface Sci., 358 (2011) 230–237.
  50. F. Long, J.L. Gong, G. M. Zeng, L. Chen, X.Y. Wang, J.H. Deng, Q.Y. Niu, H.Y. Zhang, X.R. Zhang, Removal of phosphate from aqueous solution by magnetic Fe–Zr binary oxide, Chem. Eng. J., 171 (2011) 448–455.
  51. U. Schwertmann, R.M. Cornell, Iron Oxides in the Laboratory: Preparation and Characterization, second ed., Wiley-VCH, Weinheim, 2000.
  52. A. Hofmann, M. Pelletier, L. Michot, A. Stradner, P. Schurtenberger, R. Kretzschmar, Characterization of the pores in hydrous ferric oxide aggregates formed by freezing and thawing, J. Colloid Interface Sci., 271 (2004) 163–173.
  53. Y. Wang, D. Liu, J. Lu, J. Huang, Enhanced adsorption of hexavalent chromium from aqueous solutions on facilely synthesized mesoporous iron-zirconium bimetal oxide, Colloid Surf., A, 481 (2015) 133–142.
  54. Z. Ren, L. Shao, G. Zhang, Adsorption of phosphate from aqueous solution using an iron–zirconium binary oxide sorbent, Water Air Soil Pollut., 223 (2012) 4221–4231.
  55. M. Naushad, T. Ahamad, B.M. Al-Maswari, A.A. Alqadami, S.M. Alshehri, Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium, Chem. Eng. J., 330 (2017) 1351–1360.
  56. C. Urlacher, J. Mugnier, Waveguide Raman spectroscopy used for structural investigations of ZrO2 sol-gel waveguiding layers, J. Raman Spectrosc., 27 (1996) 785–792.
  57. Y.S. Li, J.S. Church, A.L. Woodhead, Infrared and Raman spectroscopic studies on iron oxide magnetic nanoparticles and their surface modifications, J. Magn. Magn. Mater., 324 (2012) 1543–1550.
  58. A.A. Alqadami, M. Naushad, Z.A. Alothman, A.A. Ghfar, Novel Metal−Organic Framework (MOF) based composite material for the sequestration of U(VI) and Th(IV) metal ions from aqueous environment, ACS Appl. Mater. Interfaces, 9 (2017) 36026–36037.
  59. K. Singh, M. Gautam, B. Chandra, A. Kumar, Removal of Pb(II) from its aqueous solution by activated carbon derived from Balam Khira (Kigelia Africana), Desal. Wat. Treat., 57 (2016) 1–11.
  60. N.S. Kumar, K. Min, Removal of phenolic compounds from aqueous solutions by biosorption onto Acacia Leucocephala bark powder: equilibrium and kinetic studies, J. Chil. Chem. Soc., 56 (2011) 539–545.
  61. B. Zhang, F. Lia, T. Wub, D. Sunb, Y. Lia, Adsorption of p-nitrophenol from aqueous solutions using nanographite oxide, Colloid Surf., A, 464 (2015) 78–88.
  62. M. Masomi, A.A. Ghoreyshi, G.D. Najafpour, A.R. Mohamed, Adsorption of phenolic compounds onto the activated carbon synthesized from pulp and paper mill sludge: equilibrium isotherm, kinetics, thermodynamics and mechanism studies, IJE Trans A Basics, 27 (2014) 1485–1494.
  63. J.M. Li, X.G. Meng, C.W. Hu, J. Du, Adsorption of phenol, p-chlorophenol and p-nitrophenol onto functional chitosan, Bioresour. Technol., 100 (2009) 1168–1173.
  64. K. Singh, M. Gautam, Development of inexpensive biosorbents from de-oiled mustard cake for effective removal of As(V) and Pb(II) ions from their aqueous solutions, J. Environ. Chem. Eng., 5 (2017) 4728–4741.
  65. Y. Liu, Y.J. Liu, Biosortion isotherms, kinetics and thermodynamics, Sep. Purif. Technol., 61 (2008) 229–242.
  66. V. Vimonses, S. Lei, B. Jin, C.W. Chow, C. Saint, Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials, Chem. Eng. J., 148 (2009) 354–364.
  67. B. Chu, B. Baharin, Y. Che Man, S. Quek, Separation of vitamin E from palm fattyacid distillate using silica: I Equilibrium of batch adsorption, J. Food Eng., 62 (2004) 97–103.
  68. Y. Ho, G. McKay, Comparative sorption kinetic studies of dye and aromatic compounds onto fly ash, J. Environ. Sci. Health A, 34 (1999) 1179–1204.
  69. N.G.R. Silva, J.C.M. Pirajan, L.G. Giraldo, Thermodynamic study of adsorption of phenol, 4-chlorophenol and 4-nitrophenol on activated carbon obtained from eucalyptus seed, J. Chem., 2015 (2015) 1–9.
  70. M. Ahmaruzzaman, S.L. Gayatri, Activated neem leaf: a novel adsorbent for the removal of phenol, 4-nitrophenol and 4-chlorophenol from aqueous solutions, J. Chem. Eng. Data, 56 (2011) 3004–3016.
  71. U. Thawornchaisit, K. Pakulanon, Application of dried sewage sludge as phenol biosorbent, Bioresour. Technol., 98 (2007) 140–144.
  72. Z. Aksu, J. Yener, Investigation of the biosorption of phenol and monochlorinated phenols on the dried activated sludge, J. Process Biochem., 33 (1998) 649–655.
  73. M. Otero, F. Rozada, L.F. Calvo, A.I. Garca, A. Moran, Elimination of organic water pollutants using adsorbents obtained from sewage sludge, Dyes Pigm., 57 (2003) 55–65.
  74. H. Polat, M. Molva, M. Polat, Capacity and mechanism of phenol adsorption on lignite, Int. J. Miner. Process, 79 (2006) 264–273.
  75. Z. Aksu, J. Yener, A comparative adsorption/biosorption study of mono-chlorinated phenols onto various sorbents, Waste Manage., 21 (2001) 695–702.
  76. C. Xiaoli, Z. Youcai, Adsorption of phenolic compound by aged-refuse, J. Hazard. Mater., B137 (2006) 410–417.
  77. E. Rubín, P. Rodrígue, R, Herrero, de V. Sastre, E. Manuel, Biosorption of phenolic compounds by the brown alga Sargassum muticum, J. Chem. Technol. Biotechnol., 81 (2006) 1093–1099.
  78. V.K. Gupta, I. Ali, V.K. Saini, Removal of chlorophenols from wastewater using red mud: an aluminium industry waste, Environ. Sci. Technol., 38 (2004) 4012–4018.
  79. L.C. Zhou, X. G. Meng, J.W. Fu, Y.C. Yang, P. Yang, C. Mi, Highly efficient adsorption of chlorophenols onto chemically modified chitosan, Appl. Surf. Sci., 292 (2014) 735–741.
  80. B.K. Singh, P.S. Nayak, Sorption equilibrium studies of toxic nitro-substituted phenols on fly ash, Adsorpt. Sci. Technol., 22 (2004) 295–310.
  81. A.E.H. Daifullah, H. Gad, Sorption of semi-volatile organic compounds by bottom and fly ashes using HPLC, Adsorpt. Sci. Technol., 16 (1998) 273–283.