References

  1. A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Ávila, Adsorption Processes for Water Treatment and Purification, 1st ed., Springer International Publishing, Cham, 2017.
  2. C. Fernández, M.S. Larrechi, M.P. Callao, An analytical overview of processes for removing organic dyes from wastewater effluents, TrAC - Trends Anal. Chem., 29 (2010) 1202–1211.
  3. K.Y. Foo, B.H. Hameed, An overview of dye removal via activated carbon adsorption process, Desal. Wat. Treat., 19 (2010) 255–274.
  4. V. Vadivelan, K. Vasanth Kumar, Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk, J. Colloid Interface Sci., 286 (2005) 90–100.
  5. A. Machrouhi, M. Farnane, A. Elhalil, M. Abdennouri, H. Tounsadi, S. Qourzal, N. Barka, Biosorption potential of Thapsia transtagana stems for the removal of dyes: kinetics, equilibrium and thermodynamics, Desal. Wat. Treat., 126 (2018) 324–332.
  6. T. Zhang, Z.R. Nan, Decolorization of Methylene Blue and Congo Red by attapulgite-based heterogeneous Fenton catalyst, Desal. Wat. Treat., 57 (2016) 4633–4640.
  7. B. Fryczkowska, The application of ultrafiltration composite GO/PAN membranes for removing dyes from textile wastewater, Desal. Wat. Treat., 128 (2018) 79–88.
  8. M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption of methylene blue on low-cost adsorbents: a review, J. Hazard. Mater., 177 (2010) 70–80.
  9. R.C. Bansal, M. Goyal, Activated Carbon Adsorption, 1st ed., CRC Press, 2005.
  10. K.J.L. dos Santos, G.E. de Souza dos Santos, Í.M.G.L. de Sá, S.H.V. de Carvalho, J.I. Soletti, L. Meili, J.L. da Silva Duarte, M.D. Bispo, G.L. Dotto, Syagrus oleracea–activated carbon prepared by vacuum pyrolysis for methylene blue adsorption, Environ. Sci. Pollut. Res., 26 (2019) 16470–16481.
  11. N. Mehrabi, M. Soleimani, M.M. Yeganeh, H. Sharififard, Parameter optimization for nitrate removal from water using activated carbon and composite of activated carbon and Fe2O3 nanoparticles, RSC Adv., 5 (2015) 51470–51482.
  12. J.Y. Chen, Activated Carbon Fiber and Textiles, 1st ed., Elsevier, 2017.
  13. Z. Yue, A. Vakili, J. Wang, Activated carbon fibers from meltblown isotropic pitch fiber webs for vapor phase adsorption of volatile organic compounds, Chem. Eng. J., 330 (2017) 183–190.
  14. J.P. Boudou, P. Parent, F. Suárez-García, S. Villar-Rodil, A. Martínez-Alonso, J.M.D. Tascón, Nitrogen in aramid-based activated carbon fibers by TPD, XPS and XANES, Carbon N. Y., 44 (2006) 2452–2462.
  15. B. Maddah, K. Nasouri, Fabrication of high surface area PAN-based activated carbon fibers using response surface methodology, Fibers Polym., 16 (2015) 2141–2147.
  16. H.M. Feng, S.J. Zhang, Y.Z. Chen, Y.W. Ding, H.Q. Yu, M.H.W. Lam, Fabrication and evaluation of mesoporous poly(vinyl alcohol)-based activated carbon fibers, Ind. Eng. Chem. Res., 48 (2009) 3398–3402.
  17. M. Vujković, L. Matović, J. Krstić, M. Stojmenović, A. Đukić, B. Babić, S. Mentus, Mechanically activated carbonized rayon fibers as an electrochemical supercapacitor in aqueous solutions, Electrochim. Acta, 245 (2017) 796–806.
  18. E. Ekrami, F. Dadashian, M. Soleimani, Waste cotton fibers based activated carbon: optimization of process and product characterization, Fibers Polym., 15 (2014) 1855–1864.
  19. E. Ekrami, F. Dadashian, M. Arami, Adsorption of methylene blue by waste cotton activated carbon: equilibrium, kinetics, and thermodynamic studies, Desal. Wat. Treat., 57 (2016) 7098–7108.
  20. R. Salehi, F. Dadashian, M. Abedi, B. Hasani, Optimization of chemical activation of cotton fabrics for activated carbon fabrics production using response surface methodology, J. Text. Inst., 109 (2018) 1586.
  21. J.M. Huang, I.J. Wang, C.H. Wang, Preparation and adsorptive properties of cellulose-based activated carbon tows from cellulose filaments, J. Polym. Res., 8 (2001) 201–207.
  22. P.J.M. Carrott, M.M.L. Ribeiro Carrott, P.F.M.M. Correia, Evolution of porosity of activated carbon fibres prepared from preoxidized acrylic fibres, Microporous Mesoporous Mater., 264 (2018) 176–180.
  23. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review, Adv. Colloid Interface Sci., 209 (2014) 172–184.
  24. A.H. Jawad, M.H. Sauodi, M.S. Mastuli, M.A. Aouda, K.A. Radzun, Pomegranate peels collected from fresh juice shop as a renewable precursor for high surface area activated carbon with potential application for methylene blue adsorption, Desal. Wat. Treat., 124 (2018) 287–296.
  25. M. Pirsaheb, Z. Rezai, A.M. Mansouri, A. Rastegar, A. Alahabadi, A.R. Sani, K. Sharafi, Preparation of the activated carbon from India shrub wood and their application for methylene blue removal: modeling and optimization, Desal. Wat. Treat., 57 (2016) 5888–5902.
  26. M.A. do Amaral Junior, J.T. Matsushima, M.C. Rezende, E.S. Gonçalves, J.S. Marcuzzo, M.R. Baldan, Production and characterization of activated carbon fiber from textile PAN Fiber, J. Aerosp. Technol. Manage., 9 (2017) 423–430.
  27. M. Song, W. Zhang, Y. Chen, J. Luo, J.C. Crittenden, The preparation and performance of lignin-based activated carbon fiber adsorbents for treating gaseous streams, Front. Chem. Sci. Eng., 11 (2017) 328–337.
  28. N. Yusof, D. Rana, A.F. Ismail, T. Matsuura, Microstructure of polyacrylonitrile-based activated carbon fibers prepared from solvent-free coagulation process, J. Appl. Res. Technol., 14 (2016) 54–61.
  29. N. Díez, P. Álvarez, M. Granda, C. Blanco, R. Santamaría, R. Menéndez, A novel approach for the production of chemically activated carbon fibers, Chem. Eng. J., 260 (2015) 463–468.
  30. X.Q. Wei, Q.H. Li, H.C. Li, H.J. Li, S.X. Chen, The use of ZnCl2 activation to prepare low-cost porous carbons coated on glass fibers using mixtures of Novolac, polyethylene glycol and furfural as carbon precursors, Xinxing Tan Cailiao/New Carbon Mater., 30 (2015) 579–586.
  31. N. Diez, P. Díaz, P. Álvarez, Z. González, M. Granda, C. Blanco, R. Santamaría, R. Menéndez, Activated carbon fibers prepared directly from stabilized fibers for use as electrodes in supercapacitors, Mater. Lett., 136 (2014) 214–217.
  32. S.Y. Lee, S.J. Park, Determination of the optimal pore size for improved CO2 adsorption in activated carbon fibers, J. Colloid Interface Sci., 389 (2013) 230–235.
  33. N. Yusof, A.F. Ismail, D. Rana, T. Matsuura, Effects of the activation temperature on the polyacrylonitrile/acrylamide-based activated carbon fibers, Mater. Lett., 82 (2012) 16–18.
  34. M.A. Nahil, P.T. Williams, Surface chemistry and porosity of nitrogen-containing activated carbons produced from acrylic textile waste, Chem. Eng. J., 184 (2012) 228–237.
  35. L. Wang, Z. Huang, M. Zhang, B. Chai, Adsorption of methylene blue from aqueous solution on modified ACFs by chemical vapor deposition, Chem. Eng. J., 189–190 (2012) 168–174.
  36. K.L. Chiu, D.H.L. Ng, Synthesis and characterization of cottonmade activated carbon fiber and its adsorption of methylene blue in water treatment, Biomass Bioenergy, 46 (2012) 102–110.
  37. M.A.A. Zaini, Y. Amano, M. Machida, Adsorption of heavy metals onto activated carbons derived from polyacrylonitrile fiber, J. Hazard. Mater., 180 (2010) 552–560.
  38. Y.J. Su, T.H. Ko, J.H. Lin, Preparation of ultra-thin PAN-Based activated carbon fibers with physical activation, J. Appl. Polym. Sci., 108 (2008) 3610–3617.
  39. S. Lei, J. ichi Miyamoto, H. Kanoh, Y. Nakahigashi, K. Kaneko, Enhancement of the methylene blue adsorption rate for ultramicroporous carbon fiber by addition of mesopores, Carbon N. Y., 44 (2006) 1884–1890.
  40. M. Wu, Q. Zha, J. Qiu, Y. Guo, H. Shang, A. Yuan, Preparation and characterization of porous carbons from PAN-based preoxidized cloth by KOH activation, Carbon N. Y., 42 (2004) 205–210.
  41. P.J.M. Carrott, J.M.V. Nabais, M.M.L. Ribeiro Carrott, J.A. Pajares, Preparation of activated carbon fibres from acrylic textile fibres, Carbon N. Y., 39 (2001) 1543–1555.
  42. S.Y. You, Y.H. Park, C.R. Park, Preparation and properties of activated carbon fabric from acrylic fabric waste, Carbon N. Y., 38 (2000) 1453–1460.
  43. T.H. Ko, Regeneration of PAN-based activated carbon fibers by thermal treatments in air and carbon dioxide, J. Mater. Res., 10 (1995) 1969–1976.
  44. T.H. Ko, P. Chiranairadul, C.H. Lin, The study of polyacrylonitrile- based activated carbon fibres for water purification: Part I, J. Mater. Sci. Lett., 11 (1992) 6–8.
  45. P.H. Wang, K.L. Hong, Q.R. Zhu, Surface analyses of polyacrylonitrile- based activated carbon fibers by X-ray photoelectron spectroscopy, J. Appl. Polym. Sci., 62 (1996) 1987–1991.
  46. A. Rabbi, F. Dadashian, Simultaneous improvement in tensile strength and adsorption capacity of activated carbon fibers during stabilization and activation of acrylic fibers, Diam. Relat. Mater., 95 (2019) 174–184.
  47. A. Mianowski, M. Owczarek, A. Marecka, Surface area of activated carbon determined by the iodine adsorption number, Energy Sources, Part A, 29 (2007) 839–850.
  48. T. Mahmood, A. Khan, A. Naeem, M. Hamayun, M. Muska, M. Farooq, F. Hussain, Adsorption of Ni(II) ions from aqueous solution onto a fungus Pleurotus ostreatus, Desal. Wat. Treat., 57 (2016) 7209–7218.
  49. L. Largitte, R. Pasquier, A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon, Chem. Eng. Res. Des., 109 (2016) 495–504.
  50. M. Yoshida, M. Hirai, Process for Production of Activated Carbon, US Patent, US4256607A, 1981.
  51. J.W.S. Hearle, W.E. Morton, Physical Properties of Textile Fibres, Fourth edition, Woodhead publishing limited, Cambridge, 2008.
  52. A.A. Spagnoli, D.A. Giannakoudakis, S. Bashkova, Adsorption of methylene blue on cashew nut shell based carbons activated with zinc chloride: The role of surface and structural parameters, J. Mol. Liq., 229 (2017) 465–471.
  53. S. Senthilkumaar, P.R. Varadarajan, K. Porkodi, C.V. Subbhuraam, Adsorption of methylene blue onto jute fiber carbon: kinetics and equilibrium studies, J. Colloid Interface Sci., 284 (2005) 78–82.
  54. M. Aseel, N. Abbas, F. Ayad, Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon, Arab. J. Chem., 10 (2017) S3381–S3393.
  55. I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I Solids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
  56. I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Enhancement of basic dye adsorption uptake from aqueous solutions using chemically modified oil palm shell activated carbon, Colloids Surf., A, 318 (2008) 88–96.
  57. H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem, 57 (1906) 385–471.
  58. C. Senthamarai, P.S. Kumar, M. Priyadharshini, P. Vijayalakshmi, V.V. Kumar, P. Baskaralingam, K.V. Thiruvengadaravi, S. Sivanesan, Adsorption behavior of methylene blue dye onto surface modified Strychnos potatorum seeds, Environ. Prog. Sustain. Energy, 32 (2013) 624–632.
  59. M.J. Temkin, V. Pyzhev, Recent modifications to Langmuir isotherms, Acta Physiochem. USSR, 12 (1940) 217–225.
  60. M.M. Dubinin, L.V. Radushkevich, Equation of the characteristics curves of activated charcoal, Proc. Acad. Sci. USSR. Phys. Chem. Sect., 55 (1947) 331–333.
  61. Y. Zhi-Yuan, Kinetics and mechanism of the adsorption of methylene blue onto ACFs, J. China Univ. Min. Technol., 18 (2008) 0437–0440.
  62. H. Cherifi, B. Fatiha, H. Salah, Kinetic studies on the adsorption of methylene blue onto vegetal fiber activated carbons, Appl. Surf. Sci., 282 (2013) 52–59.
  63. I.A.W. Tan, B.H. Hameed, A.L. Ahmad, Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon, Chem. Eng. J., 127 (2007) 111–119.
  64. F.F. Avelar, M.L. Bianchi, M. Gonçalves, E.G. da Mota, The use of piassava fibers (Attalea funifera) in the preparation of activated carbon, Bioresour. Technol., 101 (2010) 4639–4645.
  65. X. Duan, C. Srinivasakannan, X. Wang, F. Wang, X. Liu, Synthesis of activated carbon fibers from cotton by microwave induced H3PO4 activation, J. Taiwan Inst. Chem. Eng., 70 (2017) 374–381.
  66. R.-S. Juang, Y.-C. Yei, C.-S. Liao, K.-S. Lin, H.-C. Lu, S.-F. Wang, A.-C. Sun, Synthesis of magnetic Fe3O4/activated carbon nanocomposites with high surface area as recoverable adsorbents, J. Taiwan Inst. Chem. Eng., 90 (2018) 51–60.
  67. H.N. Tran, Y.F. Wang, S.J. You, H.P. Chao, Insights into the mechanism of cationic dye adsorption on activated charcoal: the importance of Π–Π interactions, Process Saf. Environ. Prot., 107 (2017) 168–180.
  68. M. Ji, S. ShuangShuang, C. KeZheng, Facile and scalable synthesis of magnetite/carbon adsorbents by recycling discarded fruit peels and their potential usage in water treatment, Bioresour. Technol., 233 (2017) 110–115.
  69. M. Suzuki, Activated carbon fiber: Fundamentals and applications, Carbon N. Y., 32 (1994) 577–586.