References

  1. P.A. Carneiro, R.F.P. Nogueira, M.V.B. Zanoni, Homogeneous photodegradation of C.I. reactive blue 4 using a photo–Fenton process under artificial and solar irradiation, Dyes Pigm., 74 (2007) 127–132.
  2. J.E.B. McCallum, S.A. Madison, S. Alkan, R.L. Depinto, R.U.R. Wahl, Analytical studies on the oxidative degradation of the reactive textile dye Uniblue A, Environ. Sci. Technol., 34 (2000) 5157–5164.
  3. Y.D. Sintayehu, A.B. Gemeta, S.G. Berehe, Optical photocatalytic degradation of methylene blue using lignocellulose modified TiO2, Int. J. Photochem. Photobiol., 2 (2017) 81–84.
  4. A. Arunkumar, T. Chandrasekaran, K.R. Ahamed, ZnO doped with activated carbon for photocatalytic degradation of methylene blue and malachite green on UV–visible light, Int. J. Nano Corros. Sci. Eng., 2 (2015) 300–307.
  5. K. Lazaar, W. Hajjaji, R.C. Pullar, J.A. Labrincha, F. Rocha, F. Jamoussi, Production of silica gel from Tunisian sands and its adsorptive properties, J. Afr. Earth. Sci., 130 (2017) 238–251.
  6. I. Koyuncu, Reactive dye removal in dye/salt mixtures by nanofiltration membranes containing vinylsulphone dyes: effects of feed concentration and cross flow velocity, Desalination, 143 (2002) 243–253.
  7. X. Jiang, K. Cai, J. Zhang, Y. Shen, S.G. Wang, X.Z. Tian, Synthesis of a novel water-soluble chitosan derivative for flocculated decolorization, J. Hazard. Mater., 185 (2011) 1482–1488.
  8. Ö. Gök, A.S. Özcan, A. Adnan, Adsorption behavior of a textile dye of reactive blue 19 from aqueous solutions onto modified bentonite, Appl. Surf. Sci., 256 (2010) 5439–5443.
  9. G. Moussavi, M. Mahmoudi, Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles, J. Hazard. Mater., 168 (2009) 806–812.
  10. M.H. Do, N.H. Phan, T.D. Nguyen, T.T.S. Pham, V.K. Nguyen, T.T.T. Vu, T.K.P. Nguyen, Activated carbon/Fe3O4 nanoparticle composite: fabrication, methyl orange removal and regeneration by hydrogen peroxide, Chemosphere, 85 (2011) 1269–1276.
  11. G. Xue, H.H. Liu, Q.Y. Chen, C. Hills, M. Tyrer, F. Innocent, Synergy between surface adsorption and photocatalysis during degradation of humic acid on TiO2/activated carbon composites, J. Hazard. Mater., 186 (2011) 765–772.
  12. J.R. Guimarães, M.G. Maniero, R. Nogueira de Araújo, A comparative study on the degradation of RB-19 dye in an aqueous medium by advanced oxidation processes, J. Environ. Manage., 110 (2012) 33–39.
  13. J.G. Qu, N.N. Li, B.J. Liu, J.X. He, Preparation of BiVO4/bentonite catalysts and their photocatalytic properties under simulated solar irradiation, Mater. Sci. Semicond. Process., 16 (2013) 99–105.
  14. W. Hajjaji, S.O. Ganiyu, D.M. Tobaldi, S. Andrejkovičová, R.C. Pullar, F. Rocha, J.A. Labrincha, Natural Portuguese clayey materials and derived TiO2-containing composites used for decolouring methylene blue (MB) and orange II (OII) solutions, Appl. Clay Sci., 83 (2013) 91–98.
  15. B.L. Xing, C.L. Shi, C.X. Zhang, G.Y. Yi, L.J. Chen, H. Guo, G.X. Huang, J.L. Cao, Preparation of TiO2/activated carbon composites for photocatalytic degradation of RhB under UV light irradiation, J. Nanomater., 2016 (2016) 10 p, doi: org/10.1155/2016/8393648.
  16. J. Araña, J.M. Doña-Rodríguez, E.T. Rendón, C. Garriga i Cabo, O. González-Díaz, J.A. Herrera-Melián, J.M. Pérez-Peña, G. Colón, J.A. Navío, TiO2 activation by using activated carbon as a support: Part I. Surface characterisation and decantability study, Appl. Catal., B, 44 (2003) 161–172.
  17. Z. Zainal, L.K. Hui, M.Z. Hussein, A.H. Abdullah, Imad (Moh’d Khair) Rashid Hamadneh, Characterization of TiO2–chitosan/glass photocatalyst for the removal of a monoazo dye via photodegradation–adsorption process, J. Hazard. Mater., 164 (2009) 138–145.
  18. T. Kodom, G. Djaneye-Boundjou, L.M. Bawa, B. Gombert, N. Alonso-Vante, Etude de la photodégradation du reactive black 5 et du reactive orange 16 en solution aqueuse en utilisant des couches minces de TiO2, Int. J. Biol. Chem. Sci., 5 (2011) 232–246.
  19. W.L.F. Armarego, C.L.L. Chai, Purification of Laboratory Chemicals, 7th ed., Butterworth-Heinemann is an imprint of Elsevier, Australian National University, Canberra A.C.T., Australia, 2013.
  20. J.M. Gómez, J. Galán, A. Rodríguez, G.M. Walker, Dye adsorption onto mesoporous materials: pH influence, kinetics and equilibrium in buffered and saline media, J. Environ. Manage., 146 (2014) 355–361.
  21. J. Lin, H.Y. Zhang, H.Q. Hong, H. Liu, X.B. Zhang, A Thermally conductive composite with a silica gel matrix and carbonencapsulated copper nanoparticles as filler, J. Electron. Mater., 43 (2014) 2759–2769.
  22. Y. Liu, J. Shen, B. Zhou, G.M. Wu, Z.H. Zhang, Effect of hydrophobicity on the stability of sol–gel silica coatings in vacuum and their laser damage threshold, J. Sol-Gel Sci. Technol., 68 (2013) 81–87.
  23. D. Château, Etude de l’influence de la structure et de la composition de matériaux hybrides monolithiques sur les propriétés optiques (luminescence et absorption non-linèaire), Thèse de doctorat, Ecole normale supérieure de Lyon, France, 2013, p. 138.
  24. Q. Xu, P. Yin, G.F. Zhao, G. Yin, R.J. Qu, Synthesis and characterization of silica gel microspheres encapsulated by salicyclic acid functionalized polystyrene and its adsorption of transition metal ions from aqueous solutions, Cent. Eur. J. Chem., 8 (2010) 214–222.
  25. A. Brown, M. Augustin, M. Jünger, M. Zutt, J. Dissemond, E. Rabe, R. Kaufmann, M. Simon, M. Stücker, S. Karrer, W. Koenen, W. Vanscheidt, K. Scharfetter-Kochanek, U. Wollina, T. Krieg, S.A. Eming, Randomized standard-of-care-controlled trial of a silica gel fibre matrix in the treatment of chronic venous leg ulcers, Eur. J. Dermatol., 24 (2014) 210–216.
  26. X.T. Gao, I.E. Wachs, Titania–silica as catalysts: molecular structural characteristics and physico-chemical properties, Catal. Today, 51 (1999) 233–254.
  27. Y.M. Wang, S.W. Liu, Z.L. Xiu, X.B. Jiao, X.P. Cui, J. Pan, Preparation and photocatalytic properties of silica gelsupported TiO2, Mater. Lett., 60 (2005) 974–978.
  28. E.M. de la Fournière, A.G. Leyva, E.A. Gautier, M.I. Litter, Treatment of phenylmercury salts by heterogeneous photocatalysis over TiO2, Chemosphere, 67 (2007) 682–688.
  29. V. Matějka, P. Matějková, P. Kovář, J. Vlček, J. Přikryl, P. Červenka, Z. Lacný, J. Kukutschová, Metakaolinite/TiO2 composite: photoactive admixture for building materials based on Portland cement binder, Constr. Build. Mater., 35 (2012) 38–44.
  30. Y. Hendrix, A. Lazaro, Q.L. Yu, J. Brouwers, Titania-silica composites: a review on the photocatalytic activity and synthesis methods, World J. Nano Sci. Eng., 5 (2015) 161–177.
  31. R. De-Richter, S. Caillol, Fighting global warming: the potential of photocatalysis against CO2, CH4, N2O, CFCs, tropospheric O3, BC and other major contributors to climate change, J. Photochem. Photobiol., 12 (2011) 1–19.
  32. W. Trabelsi, M. Benzina, S. Bouaziz, Physico-chemical characterisation of the Douiret sand (Southern Tunisia): valorisation for the production of silica gel, Physics Procedia, 2 (2009) 1461–1467.
  33. D. Brahmi, D. Merabet, H. Belkacemi, T.A. Mostefaoui, N. Ait Ouakli, Preparation of amorphous silica gel from Algerian siliceous by-product of kaolin and its physico chemical properties, Ceram. Int., 40 (2014) 10499–10503.
  34. A. Radian, K.G. Aukema, A. Aksan, L.P. Wackett, Silica gel for enhanced activity and hypochlorite protection of cyanuric acid hydrolase in recombinant Escherichia coli, Am. Soc. Microbiol., 6 (2015) e1477–15.
  35. S. Marzouk, F. Rachdi, M. Fourati, J. Bouaziz, Synthesis and grafting of silica aerogels, Colloids Surf., A, 234 (2004) 109–116.
  36. R.M. Ali, H.A. Hamad, M.M. Hussein, G.F. Malash, Potential of using green adsorbent of heavy metal removal from aqueous solutions: adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis, Ecol. Eng., 91 (2016) 317–332.
  37. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60 (1938) 309–319.
  38. Z. Meçabih, S. Kacimi, B. Bouchikhi, Adsorption des matières organiques des eaux usées urbaines sur la bentonite modifiée par Fe(III), Al(III) et Cu(II), Rev. Sci. Eau/J. Water Sci., 19 (2006) 23–31.
  39. D. Ašperger, I. Varga, S. Babić, L. Ćurković, Adsorption of enrofloxacine on natural zeolite – clinoptilolite, Holistic Approach Environ., 4 (2014) 3–15.
  40. A. Robalds, L. Dreijalte, O. Bikovens, M. Klavins, A novel peatbased biosorbent for the removal of phosphate from synthetic and real wastewater and possible utilization of spent sorbent in land application, Desal. Wat. Treat., 57 (2016) 13285–13294.
  41. H. Al-Ekabi, N. Serpone, Kinetics studies in heterogeneous photocatalysis. I. Photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over titania supported on a glass matrix, J. Phys. Chem., 92 (1988) 5726–5731.
  42. M. Prassas, Synthese des gels du système SiO2–Na2O et des gels monolithiques de silice, Etude de leur conversion en verre, Thèse de Doctorat, Montpellier, France, 1981.
  43. P. Webb, C. Orr, Analytical Methods in Fine Particle Technology, Micromeritics Instrument Corporation, Norcross, GA, 1988.
  44. F. Sakr, A. Sennaoui, M. Elouardi, M. Tamimi, A. Assabbane, Étude de l’adsorption du Bleu de Méthylène sur unbiomatériau à base de Cactus (Adsorption study of Methylene Blue on biomaterial using cactus), J. Mater. Environ. Sci., 6 (2015) 397–406.
  45. A. Boukraa, F. Messemmeche, Etude qualitative et quantitative de l’adsorption de bleu de méthylène sur le charbon actif en poudre, Revue science des matériaux, 7 (2016) 25–41.
  46. E. Errais, J. Duplay, F. Darragi, I. M’Rabet, A. Aubert, F. Huber, G. Morvan, Efficient anionic dye adsorption on natural untreated clay: kinetic study and thermodynamic parameters, Desalination, 275 (2011) 74–81.
  47. Z. Huang, P. Wu, Y. Lu, X. Wang, N. Zhu, Z. Dang, Enhancement of photocatalytic degradation of dimethyl phthalate with nano-TiO2 immobilized onto hydrophobic layered double hydroxides: a mechanism study, J. Hazard. Mater., 70 (2013) 246–247.