References

  1. T.B. Mao, B. Yu, C. Wu, Research advances on the high-strength organic wastewater treatment, Adv. Mater. Res., 550–553 (2012) 2407–2411.
  2. S. Wang, I. Savva, R. Bakke, A full-scale hybrid vertical anaerobic and aerobic biofilm wastewater treatment system: case study, Water Pract. Technol., 14 (2019) 189–197.
  3. S.L.D.S. Rollemberg, A.R.M. Barros, P.I.M. Firmino, A.B.D. Santos, Aerobic granular sludge: cultivation parameters and removal mechanisms, Bioresour. Technol., 270 (2018) 678–688.
  4. M. Angela, B. Beatrice, S. Mathieu, Biologically induced phosphorus precipitation in aerobic granular sludge process, Water Res., 45 (2011) 3776–3786.
  5. N.A. Awang, M.G. Shaaban, Effect of reactor height/diameter ratio and organic loading rate on formation of aerobic granular sludge in sewage treatment, Int. Biodeterior. Biodegrad., 112 (2016) 1–11.
  6. M. Sajjad, K.S. Kim, Studies on the interactions of Ca2+ and Mg2+ with EPS and their role in determining the physicochemical characteristics of granular sludges in SBR system, Process Biochem., 50 (2015) 966–972.
  7. S.Y. Liu, G. Liu, Y.C. Tian, Y.P. Chen, H.Q. Yu, F. Fang, An innovative microelectrode fabricated using photolithography for measuring dissolved oxygen distribution in aerobic granules, Environ. Sci. Technol., 41 (2007) 5447–5452.
  8. B.S. McSwain, R.L. Irvine, M. Hausner, P.A. Wilderer, Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge, Appl. Environ. Microb., 71 (2005) 1051–1057.
  9. S. Milia, E. Malloci, A. Carucci, Aerobic granulation with petrochemical wastewater in a sequencing batch reactor under different operating conditions, Desal. Wat. Treat., 57 (2016) 27978–27987.
  10. J.H. Tay, Q.S. Liu, Y. Liu, Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor, J. Appl. Microbiol., 91 (2001) 168–175.
  11. S.K. Toh, J.H. Tay, B.Y. Moy, V. Ivanov, S.T. Tay, Size-effect on the physical characteristics of the aerobic granule in a SBR, Appl. Microbiol. Biotechnol., 60 (2003) 687–695.
  12. L. Zhu, H.Y. Qi, M.L. Lv, Y. Kong, Y.W. Yu, X.Y. Xu, Component analysis of extracellular polymeric substances (EPS) during aerobic sludge granulation using FTIR and 3D-EEM technologies, Bioresour. Technol., 124 (2012) 455–459.
  13. B.X. Thanh, C. Visvanathan, R.B. Aim, Characterization of aerobic granular sludge at various organic loading rates, Process Biochem., 44 (2009) 242–245.
  14. C. Caudan, A. Filali, M. Sperandio, E. Girbal-Neuhauser, Multiple EPS interactions involved in the cohesion and structure of aerobic granules, Chemosphere, 117 (2014) 262–270.
  15. H.L. Zhang, W.L. Jiang, R. Liu, Y. Zhou, Y. Zhang, Organic degradation and extracellular products of pure oxygen aerated activated sludge under different F/M conditions, Bioresour. Technol., 279 (2019) 189–194.
  16. L. Amand, B. Carlsson, Optimal aeration control in a nitrifying activated sludge process, Water Res., 46 (2012) 2101–2110.
  17. G.P. Sheng, H.Q. Yu, X.Y. Li, Stability of sludge flocs under shear conditions, Biochem. Eng. J., 38 (2008) 302–308.
  18. S. Kundral, R. Mudragada, E. Coro, M. Moncholi, N. Mora, S. Laha, B. Tansel, Improving settling characteristics of pure oxygen activated sludge by stripping of carbon dioxide, Water Environ. Res., 87 (2015) 498–505.
  19. H.F. Zhuang, X.T. Hong, H.J. Han, S.D. Shan, Effect of pure oxygen fine bubbles on the organic matter removal and bacterial community evolution treating coal gasification wastewater by membrane bioreactor, Bioresour. Technol., 221 (2016) 262–269.
  20. F.A. Rodríguez, P. Reboleiro-Rivas, J. Gonzalez-Lopez, E. Hontoria, J.M. Poyatos, Comparative study of the use of pure oxygen and air in the nitrification of a MBR system used for wastewater treatment, Bioresour. Technol., 121 (2012) 205–211.
  21. F.A. Rodríguez, J.M. Poyatos, P. Reboleiro-Rivas, F. Osorio, J. Gonzalez-Lopez, E. Hontoria, Kinetic study and oxygen transfer efficiency evaluation using respirometric methods in a submerged membrane bioreactor using pure oxygen to supply the aerobic conditions, Bioresour. Technol., 102 (2011) 6013–6018.
  22. F.A. Rodríguez, M.V. Martinez-Toledo, J. Gonzalez-Lopez, E. Hontoria, J.M. Poyatos, Performance of bench-scale membrane bioreactor under real work conditions using pure oxygen: viscosity and oxygen transfer analysis, Bioprocess Biosyst. Eng., 33 (2010) 885–892.
  23. K. Calderon, A. Gonzalez-Martinez, C. Montero-Puente, P. Reboleiro-Rivas, J.M. Poyatos, B. Juarez-Jimenez, M.V. Martinez-Toledo, B. Rodelas, Bacterial community structure and enzyme activities in a membrane bioreactor (MBR) using pure oxygen as an aeration source, Bioresour. Technol., 103 (2012) 87–94.
  24. P. Jiang, C.J. Tzeng, C.C. Hsieh, M.K. Stenstrom, Modeling VOC emissions in the high-purity oxygen activated sludge process, J. Environ. Eng., 136 (2010) 1189–1196.
  25. H.W. Zhu, T.C. Keener, P.L. Bishop, T.L. Orton, M. Wang, K.F. Siddiqui, Aeration recirculation in air and high purity oxygen systems for control of VOC emissions from wastewater aeration basins, Environ. Prog., 18 (1999) 101–106.
  26. J.K. Nelson, J.L. Puntenney, Performance comparison of the air and high-purity-oxygen activated sludge system, J. Water Pollut. Control Fed., 55 (1983) 336–340.
  27. T.W. Barber, K.I. Ashley, D.S. Mavinic, K. Christison, Superoxygenation: analysis of oxygen transfer design parameters using high-purity oxygen and a pressurized column, Can. J. Civil Eng., 42 (2015) 737–746.
  28. G.M. Neerackal, P.M. Ndegwa, H.S. Joo, X. Wang, C.S. Frear, J.H. Harrison, M.W. Beutel, Potential application of Alcaligenes faecalis strain No. 4 in mitigating ammonia emissions from dairy wastewater, Bioresour. Technol., 206 (2016) 36–42.
  29. N.K. Shammas, L.K. Wang, In: L.K. Wang, Biological Treatment Processes, Humana Press, a part of Springer Science+Business Media, LLC, USA, 2009, pp. 283–333.
  30. C.J. Tzeng, R. Iranpour, M.K. Stenstrom, Modelling and control of oxygen transfer in high purity oxygen activated sludge process, J. Environ. Eng., 129 (2003) 402–411.
  31. W.H. Dong, J. Yang, S.F. Zhang, N. Li, Progress of the Research on Pure Oxygen Aeration, China Resour. Compr. Util., 24 (2006) 28–30 (in Chinese with an English abstract).
  32. Z.T. Chen, S.G. Li, G.Y. Han, Y.C. Xie, Application of microbubble pure oxygen aeration technique to the treatment of industrial wastewater, Ind. Water Treat., 28 (2008) 13–16 (in Chinese with an English abstract).
  33. APHA, Standard Methods for the Examination of Water and Wastewater, 12th ed. American Public Health Association, Washington DC, 1998.
  34. D. Zhang, Z. Li, P. Lu, T. Zhang, D. Xu, A method for characterizing the complete settling process of activated sludge, Water Res., 40 (2006) 2637–2644.
  35. A.J. Schuler, H. Jang, Density effects on activated sludge zone settling velocities, Water Res., 41 (2007) 1814–1822.
  36. F.H. Pan, Y.B. Jiang, K.X. Huang, X.X. Zhang, Y.J. Huang, X.Y. Wang, Potential causes of high performance of pure-oxygen aerobic granules in SBR under high organic loading condition, Global Nest J., 19 (2017) 687–696.
  37. B.Q. Liao, H.J. Lin, S.P. Langevin, W.J. Gao, G.G. Leppard, Effects of temperature and dissolved oxygen on sludge properties and their role in bioflocculation and settling, Water Res., 45 (2011) 509–520.
  38. B.M. Wilen, D. Lumley, A. Mattsson, T. Mino, Relationship between floc composition and flocculation and settling properties studied at a full scale activated sludge plant, Water Res., 42 (2008) 4404–4418.
  39. A.R. Badireddy, S. Chellam, P.L. Gassman, M.H. Engelhard, A.S. Lea, K.M. Rosso, Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucose-controlled conditions, Water Res., 44 (2010) 4505–4516.
  40. H. Liu, H.H.P. Fang, Hydrogen production from wastewater by acidogenic granular sludge, Water Sci. Technol., 47 (2003) 153–158.
  41. I. Othman, A.N. Anuar, Z. Ujang, N.H. Rosman, H. Harun, S. Chelliapan, Livestock wastewater treatment using aerobic granular sludge, Bioresour. Technol., 133 (2013) 630–634.
  42. J. Schmitt, H.C. Flemming, FTIR-spectroscopy in microbial and material analysis, Int. Biodeterior. Biodegrad., 41 (1998) 1–11.
  43. A. Jouraiphy, S. Amir, P. Winterton, M. El Gharous, J.C. Revel, M. Hafidi, Structural study of the fulvic fraction during composting of activated sludge-plant matter: elemental analysis, FTIR and 13C NMR, Bioresour. Technol., 99 (2008) 1066–1072.
  44. B.Y.P. Moy, J.H. Tay, S.K. Toh, Y. Liu, S.T.L. Tay, High organic loading influences the physical characteristics of aerobic sludge granules, Lett. Appl. Microbiol., 34 (2002) 407–412.
  45. P. Yan, R.C. Qin, J.S. Guo, Q. Yu, Z. Li, Y.P. Chen, Y. Shen, F. Fang, Net-zero-energy model for sustainable wastewater treatment, Environ. Sci. Technol., 51 (2017) 1017–1023.