References

  1. J.A. Barton, P.F. Nolan, Runaway reactions in batch reactors, in: The protection of exothermic reactors and pressurised storage vessels, I. Chem. E Symp. Ser., 85 (1984) 13–21.
  2. P.F. Nolan, J.A. Barton, Some lessons from thermal-runaway incidents, J. Hazard. Mater., 14 (1987) 233–239.
  3. T.G. Theofanous, A physicochemical mechanism for the ignition of the Seveso accident, Nature, 291 (1981) 640–642.
  4. B. Bowonder, Industrial Hazard Management; an analysis of the Bhopal accident: Beech Tree Publishing, Surrey, England, 2 (1987) 157–168.
  5. K.K. Bhatluri, M.S. Manna, A.K. Ghoshal, P. Saha, Supported liquid membrane based removal of lead(II) and cadmium(II) from mixed feed: conversion to solid waste by precipitation, J. Hazard. Mater., 299 (2015) 504–512.
  6. K. Fortun, Advocacy After Bhopal, University of Chicago Press, Chicago, 2001.
  7. U.S. Chemical Safety and Hazard Investigation Board, T2 Laboratories, Inc., Runaway Reaction, Report No. 2008-3-I-FL, (2009) 11–12.
  8. K.R. Westerterp, E.J. Molga, Safety and runaway prevention in batch and semibatch reactors—a review, Chem. Eng. Res. Des., 84 (2006) 543–552.
  9. F. Caccavale, M. Iamarino, F. Pierri, Control and Monitoring of Chemical Batch Reactors, Advances in Industrial Control, Springer-Verlag Limited, London, 2011.
  10. F. Maestri, R. Rota, Safe operating conditions for semibatch processes involving consecutive reactions with autocatalytic behaviour, Chem. Eng. Sci., 65 (2010) 5464–5470.
  11. M. Steensma, K.R. Westerterp, Thermally safe operation of a cooled semi-batch reactor. Slow liquid-liquid reactions, Chem. Eng. Sci, 43 (1988) 2125.
  12. V. Balakotaiah, H.-C. Chang, F.T. Smith, Dispersion of chemical solutes in chromatographs and reactors, Philos. Trans Royal Soc. A, 50 (1995) 1149–1171.
  13. A. Varma, M. Morbidelli, H. Wu, Parametric Sensitivity in Chemical Systems, Cambridge University Press, Cambridge, 1999.
  14. J.M. Zaldivar, J. Cano, M.A. Alos, F. Strozzi, A general criterion to define runaway limits in chemical reactors, J. Loss Prevent. Process Ind., 16 (2003) 187–200.
  15. S. Copelli, M. Derudi, F. Maestri, R. Rota, Safe operating conditions for semibatch processes involving consecutive reactions with autocatalytic behaviour, Chem. Eng. Sci., 65 (2010) 5464–5470.
  16. Z.S. Vandova, L. Jelemensky, J. Markos, A. Molna, Steady states analysis and dynamic simulation as a complement in the hazop study of chemical reactors, Process Saf. Environ. Protect., 83 (2003) 463–471.
  17. G. Maria, D.N. Stefan, Evaluation of critical operating conditions for a semi-batch reactor by complementary use of sensitivity and divergence criteria, Chem. Biochem. Eng. Quart., 25 (2011) 9–25.
  18. S. Copelli, M. Derudi, C. Sala Cattaneo, G. Nano, V. Torretta, R. Rota, Classification and optimization of potentially runaway processes using topology tools, Comp. Chem. Eng., 56 (2013) 114–127.
  19. S. Copelli, V. Torretta, Emulsion polymerization of butyl acrylate: safe optimization using topological criteria, Ind. Eng. Chem. Res., 52 (2013) 8625–8634.
  20. S. Copelli, V. Torretta, C. Pasturenzi, M. Derudi, C. Sala Cattanco, R. Rota, On the divergence criterion for runaway detection, application to complex controlled systems, J. Loss Prevent. Process Ind., 28 (2013) 92–100.
  21. S. Copelli, M. Derudi, C.S. Cattaneo, G. Nano, M. Raboni, V. Torretta, R. Rota, Synthesis of 4-chloro-3-nitrobenzotrifluoride: Industrial thermal runaway simulation due to cooling system failure, Process Saf. Environ. Protect., 92 (2014) 659–668.
  22. S. Copelli, M. Barozzi, F. Maestri, R. Rota, Safe intensification of potentially runaway reactions: from semibatch to continuous processes, Chem. Eng. Trans., 57 (2017) 1687–1692.
  23. F. Maestri, R. Rota, Kinetic-free safe optimization of a semibatch runaway reaction: nitration of 4-chloro-benzotrifluoride, Ind. Eng. Chem. Res., 55 (2016) 12786−12794.
  24. J.P. Spence, J.A. Noronha, Reliable detection of runaway reaction precursors in liquid phase reactions, Process Saf. Progr., 7 (1988) 231–235.