References
- Z. Sharip, S. Suratman, A.J. Shaaban, A national research and
development blueprint for sustainable lake basin management
in Malaysia, Lakes Reservoirs Res. Manage., 21 (2016)
269–283.
- M. Nakamura, Preserving the health of the world, Environment,
39 (1997) 16–40.
- N.N. Rabalais, R.E. Turner, R.J. Diaz, D. Justic, Global change
and eutrophication of coastal waters, ICES J. Mar. Sci., 66 (2009)
1528–1537.
- M.T. Kiran, M.V. Bhaskar, A. Tiwari, Phycoremediation of
Eutrophic Lakes using Diatom Algae, M.N. Rashed, Lake
Sciences and Climate Change, InTech Open, Croatia, 2016.
- E.J. Olguı́n, Phycoremediation: key issues for cost-effective
nutrient removal processes, Biotechnol. Adv., 22 (2000) 81–91.
- J. De la Noue, G. Laliberté, D. Proulx, Algae and wastewater,
J. Appl. Phycol., 4 (1992) 247–254.
- W.J. Oswald, H.B. Gotaas, H.F. Ludwig, V. Lynch, Algae
symbiosis in oxidation ponds: II. Growth characteristics of
Chlorella pyrenoidosa cultured in sewage, Sewage Ind. Wastes,
25 (1953) 26–37.
- G.K.S. Singh, P. Kuppan, M. Goto, N. Sugiura, M.J.M.M.
Noor, Z. Ujang, Physical water quality and algal density for
remediation of algal blooms in tropical shallow eutrophic
reservoir, J. Novel Carbon Resour. Sci., 7 (2013) 33–41.
- L.B. Sukla, E. Subudhi, D. Pradhan, The Role of Microalgae in
Wastewater Treatment, Springer, Singapore, 2019.
- V. Sivasubramanian, V.V. Subramanian, M. Muthukumaran,
Bioremediation of chrome-sludge from an electroplating industry
using the micro alga Desmococcus olivaceus–a pilot study, J. Algal
Biomass Utln., 3 (2010) 104–128.
- V. Sivasubramanian, V. Subramanian, M. Muthukumaran,
Phycoremediation of effluent from a soft drink manufacturing
industry with a special emphasis on nutrient removal—a
laboratory study, J. Algal Biomass Utln., 3 (2012) 21–29.
- A. Khemka, M. Saraf, Phycoremediation of dairy wastewater
coupled with biomass production using Leptolyngbya sp.,
J. Environ. Sci. Water Res., 4 (2015) 1–8.
- A.D. Kshirsagar, Bioremediation of wastewater by using
microalgae: an experimental study, Int. J. Life Sci. Biotechnol.
Pharmacol. Res., 2 (2013) 339–346.
- P.R. Hanumantha, R. Ranjith Kumar, B.G. Raghavan, V.V. Subramanian,
V. Sivasubramanian, Application of phycormediation
technology in the treatment of wastewater from a
leather-processing chemical manufacturing facility, Water SA,
37 (2011) 07–14.
- R. Singh, R. Birru, G. Sibi, Nutrient removal efficiencies
of Chlorella vulgaris from urban wastewater for reduced
eutrophication, J. Environ. Prot., 8 (2017) 1–11.
- F. Ahmad, A.U. Khan, A. Yasar, Comparative phycoremediation
of sewage water by various species of algae, Proc. Pak. Acad.
Sci., 50 (2013) 131–139.
- E.J. Olguı́n, S. Galicia, O. Angulo-Guerrero, E. Hernández, The
effect of low light flux and nitrogen deficiency on the chemical
composition of Spirulina sp. (Arthrospira) grown on digested pig
waste, Bioresour. Technol., 77 (2001) 19–24.
- A. Ruiz-Marin, L.G. Mendoza-Espinosa, T. Stephenson, Growth
and nutrient removal in free and immobilized green algae in
batch and semi-continuous cultures treating real wastewater,
Bioresour. Technol., 101 (2010) 58–64.
- R.M.S. Sengar, K.K. Singh, S. Singh, Application of phycoremediation
technology in the treatment of sewage water to
reduce pollution load, Indian J. Sci. Res., 2 (2011) 33–36.
- Z. Arbib, J. Ruiz, P. Álvarez-Díaz, C. Garrido-Pérez, J.A. Perales,
Capability of different microalgae species for phytoremediation
processes: wastewater tertiary treatment, CO2 bio-fixation and
low-cost biofuels production, Water Res., 49 (2014) 465–474.
- A. Hossein, P. Behdarvand, D. Kondiram, P. Gorakh, Potential
use of Cyanobacteria species in phycoremediation of municipal
wastewater, Int. J. Biosci., 4 (2014) 105–111.
- P. Gani, N. Mohamed, H. Matias-Peralta, A.A.A Latiff,
Application of phycoremediation technology in the treatment
of food processing wastewater by freshwater microalgae
Botryococcus sp., J. Eng. Appl. Sci., 11 (2016) 7288–7292.
- P. Kitrungloadjanaporn, G. Sripongpun, W. Triampo, Nutrient
removal from the effluent of swine slaughterhouse wastewater
by Chlorella vulgaris TISTR 8580, Int. J. Adv. Agr. Environ. Eng.,
4 (2017) 28–32.
- S.K. Gupta, A. Sriwastav, F.A. Ansari, M. Nasr, A.K. Nema,
Phycoremediation: An Eco-friendly Algal Technology for Bioremediation
and Bioenergy Production, K. Bauddh, B. Singh,
J. Korstad, Phytoremediation Potential of Bioenergy Plants,
Springer, Singapore, 2017, pp. 431–456.
- S.K. Gupta, F.A. Ansari, A. Shriwastav, N.K. Sahoo, I. Rawat,
F. Bux, Dual role of Chlorella sorokiniana and Scenedesmus
obliquus for comprehensive wastewater treatment and biomass
production for biofuels, J. Cleaner Prod., 115 (2016) 255–264.
- M.T. Dokulil, K. Teubner, Cyanobacterial dominance in lakes,
Hydrobiologia, 438 (2000) 1–12.
- O. Holm-Hansen, Ecology, physiology, and biochemistry of
blue-green algae, Ann. Rev. Microbiol., 22 (1968) 47–70.
- C.S. Reynolds, R.L. Oliver, A.E. Walsby, Cyanobacterial
dominance: the role of buoyancy regulation in dynamic lake
environments, N. Z. J. Mar. Freshwater Res., 21 (1987) 379–390.
- E.G. Bellinger, D.C. Sigee, Freshwater Algae: Identification,
Enumeration and Use as Bioindicators, John Wiley & Sons,
Hoboken, USA, 2015.
- E.J. Olguín, S. Galicia, G. Mercado, T. Pérez, Annual
productivity of Spirulina (Arthrospira) and nutrient removal in
a pig wastewater recycling process under tropical conditions,
J. Appl. Phycol., 15 (2003) 249–257.
- E.J. Olguin, B. Hernandez, A. Araus, R. Camacho, R. Gonzalez,
M.E. Ramirez, G. Mercado, Simultaneous high-biomass protein
production and nutrient removal using Spirulina maxima in
sea water supplemented with anaerobic effluents, World J.
Microbiol. Biotechnol., 10 (1994) 576–578.
- E.J. Olguin, S. Galicia, R. Camacho, G. Mercado, T.J. Pérez,
Production of Spirulina sp. in sea water supplemented with
anaerobic effluents in outdoor raceways under temperate climatic
conditions, Appl. Microbiol. Biotechnol., 48 (1997) 242–247.
- A.K. Dash, M. Das, A. Pradhan, Cyanobacteria in Reducing
Pollution Load from Wastewater and Laboratory Bioassay
of Heavy Metals on Ecotoxicity Study: A Review, L.B. Sukla,
E. Subudhi, D. Pradhan, The Role of Microalgae in Wastewater
Treatment, Springer, Singapore, 2015, pp. 1–13.
- S.M. Phang, W.L. Chu, R. Rabiei, Phycoremediation, F. Bux,
Y. Chisti, Eds., The Algae World, Springer International
Publishing, Switzerland, 2015, pp. 21–40.
- K. Chojnacka, A. Chojnacki, H. Gorecka, Biosorption of Cr3+,
Cd2+ and Cu2+ ions by blue–green algae Spirulina sp.: kinetics,
equilibrium and the mechanism of the process, Chemosphere,
59 (2005) 75–84.
- A. Papazi, K. Kotzabasis, Bioenergetic strategy of microalgae
for the biodegradation of phenolic compounds—exogenously
supplied energy and carbon sources adjust the level of
biodegradation, J. Biotechnol., 129 (2007) 706–716.
- K.B. Chekroun, E. Sánchez, M. Baghour, The role of algae in
bioremediation of organic pollutants, Int. Res. J. Public Environ.
Health, 1 (2014) 19–32.
- K. Sukačová, J. Červený, Can algal biotechnology bring effective
solution for closing the phosphorus cycle? Use of algae for
nutrient removal–review of past trends and future perspectives
in the context of nutrient recovery, Eur. J. Environ. Sci., 7 (2017)
63–72.
- H.P. Jarvie, C. Neal, A. Warwick, J. White, M. Neal,
H.D. Wickham, L.K. Hill, M.C. Andrews, Phosphorus uptake
into algal biofilms in a lowland chalk river, Sci. Total Environ.,
282 (2002) 353–73.
- G. Roeselers, M.C.M. Van Loosdrecht, G. Muyzer, Phototrophic
biofilms and their potential applications, J. Appl. Phycol.,
20 (2008) 227–235.
- M. Kesaano, R.C. Sims, Algal biofilm based technology for
wastewater treatment, Algal Res., 5 (2014) 231–240.
- E. Posadas, P.A. García-Encina, A. Soltau, A. Domínguez, I. Díaz,
R. Muñoz, Carbon and nutrient removal from centrates and
domestic wastewater using algal–bacterial biofilm bioreactors,
Bioresour. Technol., 139 (2013) 50–58.
- R. Sekar, K.V.K. Nair, V.N.R. Rao, V.P. Venugopalan, Nutrient
dynamics and successional changes in a lentic freshwater
biofilm, Freshwater Biol., 47 (2002) 1893–1907.
- N.C. Boelee, H. Temmink, M. Janssen, C.J.N. Buisman,
R.H. Wijffels, Nitrogen and phosphorus removal from municipal
wastewater effluent using microalgal biofilms, Water Res.,
45 (2011) 5925–5933.
- M.B. Johnson, Z. Wen, Development of an attached microalgal
growth system for biofuel production, Appl. Microbiol. Biotechnol.,
85 (2010) 525–534.
- K. Sukacova, M. Trtilek, T. Rataj, Phosphorus removal using
a microalgal biofilm in a new biofilm photobioreactor for
tertiary wastewater treatment, Water Res., 71 (2015) 55–63.
- S.H. Lee, H.-M. Oh, B.H. Jo, S.A. Lee, S.Y. Shin, H.-S. Kim,
S.H. Lee, C.-Y. Ahn, Higher biomass productivity of microalgae
in an attached growth system, using wastewater, J. Microbiol.
Biotechnol., 24 (2014) 1566–1573.
- P.J. Schnurr, D.G. Allen, Factors affecting algae biofilm growth
and lipid production: a review, Renewable Sustainable Energy
Rev., 52 (2015) 418–429.
- W.W. Mulbry, A.C. Wilkie, Growth of benthic freshwater algae
on dairy manures, J. Appl. Phycol., 13 (2001) 301–306.
- W. Mulbry, S. Kondrad, C. Pizarro, E. Kebede-Westhead,
Treatment of dairy manure effluent using freshwater algae: algal
productivity and recovery of manure nutrients using pilot-scale
algal turf scrubbers, Bioresour. Technol., 99 (2008) 8137–8142.
- W. Mulbry, P. Kangas, S. Kondrad, Toward scrubbing the
bay: nutrient removal using small algal turf scrubbers on
Chesapeake Bay tributaries, Ecol. Eng., 36 (2010) 536–541.
- W.H. Adey, H.D. Laughinghouse, J.B. Miller, L.-A.C. Hayek,
J.G. Thompson, S. Bertman, K. Hampel, S. Puvanendran, Algal
turf scrubber (ATS) floways on the Great Wicomico River,
Chesapeake Bay: productivity, algal community structure,
substrate and chemistry1, J. Phycol., 49 (2013) 489–501.
- R.J. Craggs, W.H. Adey, K.R. Jenson, M.S.S. John, F.B. Green,
W.J. Oswald, Phosphorus removal from wastewater using an
algal turf scrubber, Water Sci. Technol., 33 (1996) 191–198.
- W. Mulbry, P. Kangas, S. Kondrad, Nitrogen and phosphorus
removal by the Algal Turf Scrubber at an oyster aquaculture
facility, Ecol. Eng., 78 (2015) 27–32.
- N.E. Ray, D.E. Terlizzi, P.C. Kangas, Nitrogen and phosphorus
removal by the Algal Turf Scrubber at an oyster aquaculture
facility, Ecol. Eng., 78 (2015) 27-32.
- Y. Li, Y.-F. Chen, P. Chen, M. Min, W. Zhou, B. Martinez,
J. Zhu, R. Ruan, Characterization of a microalga Chlorella sp.
well adapted to highly concentrated municipal wastewater for
nutrient removal and biodiesel production, Bioresour. Technol.,
102 (2011) 5138–5144.
- B. Sen, M.T. Alp, F. Sonmez, M.A.T. Kocer, O. Canpolat,
W. Elshorbagy, R.K. Chowdhury, Relationship of Algae to
Water Pollution and Waste Water Treatment, W. Eshorbagy,
R.K. Chowdhury, Water Treatment, InTech Open, Rijeka, 2013,
pp. 335–354.
- Q. Béchet, A. Shilton, B. Guieysse, Modeling the effects of
light and temperature on algae growth: state of the art and
critical assessment for productivity prediction during outdoor
cultivation, Biotechnol. Adv., 31 (2013) 1648–1663.
- J.N. Rogers, J.N. Rosenberg, B.J. Guzman, V.H. Oh, L.E.
Mimbela, A. Ghassemi, M.J. Betenbaugh, G.A. Oyler, M.D.
Donohue, A critical analysis of paddlewheel-driven raceway
ponds for algal biofuel production at commercial scales, Algal.
Res., 4 (2014) 76-88.
- M.H. Gerardi, Nitrification and Denitrification in the Activated
Sludge Process, John Wiley & Sons, New York, 2003.
- M. Medina, U. Neis, Symbiotic algal bacterial wastewater
treatment: effect of food to microorganism ratio and hydraulic
retention time on the process performance, Water Sci. Technol.,
55 (2007) 165–171.
- J. Garcia, R. Mujeriego, M. Hernandez-Marine, High rate
algal pond operating strategies for urban wastewater nitrogen
removal, J. Appl. Phycol., 12 (2000) 331–339.
- G. Gutzeit, D. Lorch, A. Weber, M. Engels, U. Neis, Bioflocculent
algal–bacterial biomass improves low-cost wastewater
treatment, Water Sci. Technol., 52 (2005) 9–18.
- F. Mesplé, C. Casellas, M. Troussellier, J. Bontoux, Modelling
orthophosphate evolution in a high rate algal pond, Ecol.
Modell., 89 (1996) 13–21.
- N.J. Cromar, H.J. Fallowfield, Effect of nutrient loading and
retention time on performance of high rate algal ponds, J. Appl.
Phycol., 9 (1997) 301–309.
- D.L. Sutherland, C. Howard-Williams, M.H. Turnbull, P.A.
Broady, R.J. Craggs, Enhancing microalgal photosynthesis and
productivity in wastewater treatment high rate algal ponds for
biofuel production, Bioresour. Technol., 184 (2015) 222–229.
- D.L. Sutherland, M.H. Turnbull, R.J. Craggs, Increased pond
depth improves algal productivity and nutrient removal
in wastewater treatment high rate algal ponds, Water Res.,
53 (2014) 271–281.
- R.J. Craggs, J. Park, S. Heubeck, D. Sutherland, High rate algal
pond systems for low-energy wastewater treatment, nutrient
recovery and energy production, N. Z. J. Bot., 52 (2014) 60–73.
- P. Gani, N.M. Sunar, H. Matias-Peralta, R.M.S.R. Mohamed,
A.A.A. Latiff, U.K. Parjo Extraction of hydrocarbons from
freshwater green microalgae (Botryococcus sp.) biomass after
phycoremediation of domestic wastewater, Int. J. Phytorem.,
19 (2017) 679–685.
- N. Mallick, Biotechnological potential of immobilized algae
for wastewater N, P and metal removal: a review, Biometals,
15 (2002) 377–390.
- M.V. Jimenez-Perez, P. Sanchez-Castillo, O. Romera,
D. Fernandez-Moreno, C. Pérez-Martınez, Growth and nutrient
removal in free and immobilized planktonic green algae
isolated from pig manure, Enzyme Microb. Technol., 34 (2004)
392–398.
- L.E. De-Bashan, Y. Bashan, Immobilized microalgae for removing
pollutants: review of practical aspects, Bioresour. Technol.,
101 (2010) 1611–1627.
- L.C. Rai, N. Mallick, Removal and assessment of toxicity of Cu
and Fe to Anabaena doliolum and Chlorella vulgaris using free and
immobilized cells, World J. Microbiol. Biotechnol., 8 (1992) 110–114.
- N.F.Y. Tam, Y.S. Wong, Effect of immobilized microalgal bead
concentrations on wastewater nutrient removal, Environ.
Pollut., 107 (2000) 145–151.
- L.E. De-Bashan, M. Moreno, J.P. Hernandez, Y. Bashan, Removal
of ammonium and phosphorus ions from synthetic wastewater
by the microalgae Chlorella vulgaris co-immobilized in alginate
beads with the microalgae growth-promoting bacterium Azospirillum brasilense, Water Res., 36 (2002) 2941–2948.
- P.S. Lau, N.F.Y Tam, Y.S. Wong, Wastewater nutrients (N and
P) removal by carrageenan and alginate immobilized Chlorella
vulgaris, Environ. Technol., 18 (1997) 945–951.
- W.W. Carmichael, C. Drapeau, D.M. Anderson, Harvesting of
Aphanizomenon flos-aquae Ralfs ex Born. & Flah. Var. flos-aquae
(Cyanobacteria) from Klamath Lake for human dietary use,
J. Appl. Phycol., 12 (2000) 585–595.
- D. Vandamme, I. Foubert, K. Muylaert, Flocculation as a
low-cost method for harvesting microalgae for bulk biomass
production, Trends Biotechnol., 31 (2013) 233–239.
- B.L. Kimmel, A.W. Groeger, Factors controlling primary production
in lakes and reservoirs: a perspective, Lakes Reservoirs Res.
Manage., 1 (1984) 277–281.
- R.E. Hecky, P. Kilham, Nutrient limitation of phytoplankton
in freshwater and marine environments: a review of recent
evidence on the effects of enrichment, Limnol. Oceanogr.,
33 (1984) 796–822.
- K.I. Keating, Blue-green algal inhibition of diatom growth:
transition from mesotrophic to eutrophic community structure,
Science, 199 (1978) 971–973.
- A. Sood, N. Renuka, R. Prasanna, A.S. Ahluwalia, Cyanobacteria
as Potential Options for Wastewater Treatment, A. Ansari,
S. Gill, R. Gill, G. Lanza, L. Newman, Phytoremediation,
Springer International Publishing, Switzerland, 2015, pp.
83–93.
- J.A. Downing, S.B. Watson, E. McCauley, Predicting Cyanobacteria
dominance in lakes, Can. J. Fish. Aquat. Sci., 58 (2001)
1905–1908.
- Y. Chisti, Large-Scale Production of Algal Biomass: Raceway
Ponds, F. Bux, Y. Chisti, Algae Biotechnology, Springer
International Publishing, Switzerland, 2016, pp 21–40.
- Z. Sharip, A.T.A. Zaki, M.A.H. Shapiai, S. Suratman,
A.J. Shaaban, Lakes of Malaysia: water quality, eutrophication
and management, Lakes Reservoirs Res. Manage., 19 (2014)
130–141.
- G. Abdul Qader, L. Barsanti, M.R. Tredici, Harvest of Arthrospira
platensis from Lake Kossorom (Chad) and its household usage
among the Kanembu, J. Appl. Phycol., 12 (2000) 493–498.
- M.T. Kiran, N.R. Parine, A. Tiwari, Potential of diatom
consortium developed by nutrient enrichment for biodiesel
production and simultaneous nutrient removal from wastewater,
Saudi J. Biol. Sci., 25 (2018) 704–709.
- L. Wang, M. Min, Y. Li, P. Chen, Y. Chen, Y. Liu, R. Ruan,
Cultivation of green algae Chlorella sp. in different wastewaters
from municipal wastewater treatment plant, Appl. Biochem.
Biotechnol., 162 (2010) 1174–1186.
- G.G. Ganf, R.L. Oliver, Vertical separation of light and available
nutrients as a factor causing replacement of green algae by
blue-green algae in the plankton of a stratified lake, J. Ecol.,
70 (1982) 829–844.
- J. Garcia, B.F. Green, T. Lundquist, R. Mujeriego, M. Hernandez-Marine, W.J. Oswald, Long term diurnal variations in contaminant
removal in high rate ponds treating urban wastewater,
Bioresour. Technol., 97 (2006) 1709–1715.
- V. Montemezzani, I.C. Duggan, I.D. Hogg, R.J. Craggs, Control
of zooplankton populations in a wastewater treatment high
rate algal pond using overnight CO2 asphyxiation, Algal Res.,
26 (2017) 250–264.
- A. Mehrabadi, M.M. Farid, R. Craggs, Effect of CO2 addition on
biomass energy yield in wastewater treatment high rate algal
mesocosms, Algal Res., 22 (2017) 93–103.
- M. Hanifzadeh, M.-H. Sarrafzadeh, Z. Nabati, O. Tavakoli,
H. Feyzizarnagh, The technical, economic and energy
assessment of an alternative strategy for mass production of
biomass and lipid from microalgae, J. Environ. Chem. Eng.,
6 (2018) 866–873.