References

  1. M.M. Morsy, J.L. Goodall, F.M. Shatnawi, M.E. Meadows, Distributed stormwater controls for flood mitigation within urbanized watersheds: case study of Rocky Branch watershed in Columbia, South Carolina, J. Hydrol. Eng., 21 (2016) 05016025.
  2. J.K. Li, A.P. Davis, A unified look at phosphorus treatment using bioretention, Water Res., 90 (2016) 141–155.
  3. Y.Y. Yang, G.S. Toor, Sources and mechanisms of nitrate and orthophosphate transport in urban stormwater runoff from residential catchments, Water Res., 121 (2017) 176–184.
  4. M.A. Paule-Mercado, B.Y. Lee, S.A. Memon, S.R. Umer, I. Salim, C.H. Lee, Influence of land development on stormwater runoff from a mixed land use and land cover catchment, Sci. Total Environ., 599–600 (2017) 2142–2155.
  5. A.P. Davis, R.G. Traver, W.F. Hunt, R. Lee, R.A. Brown, J.M. Olszewski, Hydrologic performance of bioretention stormwater control measures, J. Hydrol. Eng., 17 (2011) 604–614.
  6. Y. Yang, T.F.M. Chui, Optimizing surface and contributing areas of bioretention cells for stormwater runoff quality and quantity management, J. Environ. Manage., 206 (2018) 1090–1103.
  7. J. Xia, H.P. Wang, R.L. Stanford, G.Y. Pan, S.L. Yu, Hydrologic and water quality performance of a laboratory scale bioretention unit, Front. Environ. Sci. Eng., 12 (2018) 14.
  8. H.K. Virahsawmy, M.J. Stewardson, G. Vietz, T.D. Fletcher, Factors that affect the hydraulic performance of raingardens: implications for design and maintenance, Water Sci. Technol., 69 (2014) 982–988.
  9. L. Wang, J.H. Wei, Y.F. Huang, G.Q.Wang, I. Maqsood, Urban nonpoint source pollution buildup and washoff models for simulating storm runoff quality in the Los Angeles County, Environ. Pollut., 159 (2011) 1932–1940.
  10. M.F. Chow, Z. Yusop, Sizing first flush pollutant loading of stormwater runoff in tropical urban catchments, Environ. Earth Sci., 72 (2014) 4047–4058.
  11. M. Metadier, J.L. Bertrand-Krajewski, Pollutographs, concentrations, loads and intra-event mass distributions of pollutants in urban wet weather discharges calculated from long term on line turbidity measurements, Water Res., 46 (2012) 6836–6856.
  12. J.H. Lee, K.W. Bang, Characterization of urban stormwater runoff, Water Res., 34 (2000) 1773–1780.
  13. J.H. Lee, K.W. Bang, L.H. Ketchum, J.S. Choe, M.J. Yu, First flush analysis of urban storm runoff, Sci. Total Environ., 293 (2002) 163–175.
  14. J.J. Sansalone, C.M. Cristina, First flush concepts for suspended and dissolved solids in small impervious watersheds, J. Environ. Eng., 130 (2004) 1301–1304.
  15. K.M. Koryto, W.F. Hunt, C. Arellano, J.L. Page, Performance of regenerative stormwater conveyance on the removal of dissolved pollutants: field scale simulation study, J. Environ. Eng., 144 (2018) 04018039.
  16. C. Brown, A. Chu, B. Van Duin, C. Valeo, Characteristics of sediment removal in two types of permeable pavement, Water Qual. Res. J. Can., 44 (2009) 59–70.
  17. J. Ball, K. Rankin, The hydrological performance of a permeable pavement, Urban Water J., 7 (2010) 79–90.
  18. J. Huang, C. Valeo, J.X. He, A. Chu, Winter performance of inter-locking pavers-stormwater quantity and quality, Water, 4 (2012) 995–1008.
  19. J. Huang, C. Valeo, J.X. He, A. Chu, The influence of design parameters on stormwater pollutant removal in permeable pavements, Water Air Soil Pollut., 4 (2016) 227–311.
  20. J.Y. Liu, A.P. Davis, Phosphorus speciation and treatment using enhanced phosphorus removal bioretention, Environ. Sci. Technol., 48 (2014) 607−614.
  21. M. Wang, D.Q. Zhang, J. Su, J.W. Dong, S.K. Tan, Assessing hydrological effects and performance of low impact development practices based on future scenarios modeling, J. Clean. Prod., 179 (2018) 12–23.
  22. P. Shrestha, S.E. Hurley, B.C. Wemple, Effects of different soil media, vegetation, and hydrologic treatments on nutrient and sediment removal in roadside bioretention systems, Ecol. Eng., 112 (2018) 116–131.
  23. R.A. Brown, W.F. Hunt, Impacts of media depth on effluent water quality and hydrologic performance of undersized bioretention cells, J. Irrig. Drain. Eng., 137 (2011) 132–143.
  24. C. Evans, T.D. Davies, Causes of concentration/discharge hysteresis and its potential as a tool for analysis of episode hydrochemistry, Water Resour. Res., 34 (1998) 129–137.
  25. D.M. Lawler, G.E. Petts, I.D.L. Foster, S. Harper, Turbidity dynamics during spring storm events in an urban headwater river system: the Upper Tame, West Midlands, UK, Sci. Total Environ., 360 (2006) 109–126.
  26. V. Aich, A. Zimmermann, H. Elsenbeer, Quantification and interpretation of suspended-sediment discharge hysteresis patterns: how much data do we need?, Catena, 122 (2014) 120–129.
  27. C.E.M. Lloyd, J.E. Freer, P.J. Johnes, A.L. Collins, Using hysteresis analysis of high-resolution water quality monitoring data, including uncertainty, to infer controls on nutrient and sediment transfer in catchments, Sci. Total Environ., 543 (2016) 388–404.
  28. C.E.M. Lloyd, J.E. Freer, P.J. Johnes, A.L. Collins, Testing an improved index for analysing storm discharge–concentration hysteresis, Hydrol. Earth Syst. Sci., 20 (2016) 625–632.
  29. M.Z. Bieroza, A.L. Heathwaite, Seasonal variation in phosphorus concentration–discharge hysteresis inferred from highfrequency in situ monitoring, J. Hydrol., 524 (2015) 333–347.
  30. S.C. Tang, W. Luo, Z.H. Jia, W.L. Liu, S. Li, Y. Wu, Evaluating retention capacity of infiltration rain gardens and their potential effect on urban stormwater management in the subhumid loess region of China, Water Resour. Manage., 30 (2016) 983–1000.
  31. W.F. Geiger, Flushing Effects in Combined Sewer Systems, Proc. 4th International Conference on Urban Storm Drainage, Lausanne, Switzerland, 1987, pp. 40–46.
  32. J.L. Bertrand, G. Chebbo, A. Saget, Distribution of pollutant mass vs volume in stormwater discharges and the first flush phenomenon, Water Res., 32 (1998) 2341–2356.