References
- M.M. Morsy, J.L. Goodall, F.M. Shatnawi, M.E. Meadows,
Distributed stormwater controls for flood mitigation within
urbanized watersheds: case study of Rocky Branch watershed
in Columbia, South Carolina, J. Hydrol. Eng., 21 (2016)
05016025.
- J.K. Li, A.P. Davis, A unified look at phosphorus treatment
using bioretention, Water Res., 90 (2016) 141–155.
- Y.Y. Yang, G.S. Toor, Sources and mechanisms of nitrate and
orthophosphate transport in urban stormwater runoff from
residential catchments, Water Res., 121 (2017) 176–184.
- M.A. Paule-Mercado, B.Y. Lee, S.A. Memon, S.R. Umer, I. Salim,
C.H. Lee, Influence of land development on stormwater runoff
from a mixed land use and land cover catchment, Sci. Total
Environ., 599–600 (2017) 2142–2155.
- A.P. Davis, R.G. Traver, W.F. Hunt, R. Lee, R.A. Brown,
J.M. Olszewski, Hydrologic performance of bioretention stormwater
control measures, J. Hydrol. Eng., 17 (2011) 604–614.
- Y. Yang, T.F.M. Chui, Optimizing surface and contributing areas
of bioretention cells for stormwater runoff quality and quantity
management, J. Environ. Manage., 206 (2018) 1090–1103.
- J. Xia, H.P. Wang, R.L. Stanford, G.Y. Pan, S.L. Yu, Hydrologic
and water quality performance of a laboratory scale bioretention
unit, Front. Environ. Sci. Eng., 12 (2018) 14.
- H.K. Virahsawmy, M.J. Stewardson, G. Vietz, T.D. Fletcher,
Factors that affect the hydraulic performance of raingardens:
implications for design and maintenance, Water Sci. Technol.,
69 (2014) 982–988.
- L. Wang, J.H. Wei, Y.F. Huang, G.Q.Wang, I. Maqsood, Urban
nonpoint source pollution buildup and washoff models for
simulating storm runoff quality in the Los Angeles County,
Environ. Pollut., 159 (2011) 1932–1940.
- M.F. Chow, Z. Yusop, Sizing first flush pollutant loading of
stormwater runoff in tropical urban catchments, Environ. Earth
Sci., 72 (2014) 4047–4058.
- M. Metadier, J.L. Bertrand-Krajewski, Pollutographs, concentrations,
loads and intra-event mass distributions of
pollutants in urban wet weather discharges calculated from
long term on line turbidity measurements, Water Res., 46 (2012)
6836–6856.
- J.H. Lee, K.W. Bang, Characterization of urban stormwater
runoff, Water Res., 34 (2000) 1773–1780.
- J.H. Lee, K.W. Bang, L.H. Ketchum, J.S. Choe, M.J. Yu, First
flush analysis of urban storm runoff, Sci. Total Environ.,
293 (2002) 163–175.
- J.J. Sansalone, C.M. Cristina, First flush concepts for suspended
and dissolved solids in small impervious watersheds, J.
Environ. Eng., 130 (2004) 1301–1304.
- K.M. Koryto, W.F. Hunt, C. Arellano, J.L. Page, Performance
of regenerative stormwater conveyance on the removal of
dissolved pollutants: field scale simulation study, J. Environ.
Eng., 144 (2018) 04018039.
- C. Brown, A. Chu, B. Van Duin, C. Valeo, Characteristics of
sediment removal in two types of permeable pavement, Water
Qual. Res. J. Can., 44 (2009) 59–70.
- J. Ball, K. Rankin, The hydrological performance of a permeable
pavement, Urban Water J., 7 (2010) 79–90.
- J. Huang, C. Valeo, J.X. He, A. Chu, Winter performance of
inter-locking pavers-stormwater quantity and quality, Water,
4 (2012) 995–1008.
- J. Huang, C. Valeo, J.X. He, A. Chu, The influence of design
parameters on stormwater pollutant removal in permeable
pavements, Water Air Soil Pollut., 4 (2016) 227–311.
- J.Y. Liu, A.P. Davis, Phosphorus speciation and treatment using
enhanced phosphorus removal bioretention, Environ. Sci.
Technol., 48 (2014) 607−614.
- M. Wang, D.Q. Zhang, J. Su, J.W. Dong, S.K. Tan, Assessing
hydrological effects and performance of low impact
development practices based on future scenarios modeling,
J. Clean. Prod., 179 (2018) 12–23.
- P. Shrestha, S.E. Hurley, B.C. Wemple, Effects of different soil
media, vegetation, and hydrologic treatments on nutrient and
sediment removal in roadside bioretention systems, Ecol. Eng.,
112 (2018) 116–131.
- R.A. Brown, W.F. Hunt, Impacts of media depth on effluent
water quality and hydrologic performance of undersized
bioretention cells, J. Irrig. Drain. Eng., 137 (2011) 132–143.
- C. Evans, T.D. Davies, Causes of concentration/discharge
hysteresis and its potential as a tool for analysis of episode
hydrochemistry, Water Resour. Res., 34 (1998) 129–137.
- D.M. Lawler, G.E. Petts, I.D.L. Foster, S. Harper, Turbidity
dynamics during spring storm events in an urban headwater
river system: the Upper Tame, West Midlands, UK, Sci. Total
Environ., 360 (2006) 109–126.
- V. Aich, A. Zimmermann, H. Elsenbeer, Quantification and
interpretation of suspended-sediment discharge hysteresis
patterns: how much data do we need?, Catena, 122 (2014)
120–129.
- C.E.M. Lloyd, J.E. Freer, P.J. Johnes, A.L. Collins, Using
hysteresis analysis of high-resolution water quality monitoring
data, including uncertainty, to infer controls on nutrient and
sediment transfer in catchments, Sci. Total Environ., 543 (2016)
388–404.
- C.E.M. Lloyd, J.E. Freer, P.J. Johnes, A.L. Collins, Testing an
improved index for analysing storm discharge–concentration
hysteresis, Hydrol. Earth Syst. Sci., 20 (2016) 625–632.
- M.Z. Bieroza, A.L. Heathwaite, Seasonal variation in phosphorus
concentration–discharge hysteresis inferred from highfrequency
in situ monitoring, J. Hydrol., 524 (2015) 333–347.
- S.C. Tang, W. Luo, Z.H. Jia, W.L. Liu, S. Li, Y. Wu, Evaluating
retention capacity of infiltration rain gardens and their
potential effect on urban stormwater management in the subhumid
loess region of China, Water Resour. Manage., 30 (2016)
983–1000.
- W.F. Geiger, Flushing Effects in Combined Sewer Systems,
Proc. 4th International Conference on Urban Storm Drainage,
Lausanne, Switzerland, 1987, pp. 40–46.
- J.L. Bertrand, G. Chebbo, A. Saget, Distribution of pollutant
mass vs volume in stormwater discharges and the first flush
phenomenon, Water Res., 32 (1998) 2341–2356.