References

  1. K.F.M. Yunos, N.A. Mazlan, M.N.M. Naim, A.S. Baharuddin, A.R. Hassan, Ultrafiltration of palm oil mill effluent: effects of operational pressure and stirring speed on performance and membranes fouling, Environ. Eng. Res., 24 (2019) 263-270.
  2. F.E. Ahmed, B.S. Lalia, R. Hashaikeh, A review on electrospinning for membrane fabrication: challenges and applications, Desalination, 356 (2015) 15–30.
  3. C. Emin, E. Kurnia, I. Katalia, M. Ulbricht, Polyarylsulfonebased blend ultrafiltration membranes with combined size and charge selectivity for protein separation, Sep. Purif. Technol., 193 (2018) 127–138.
  4. J.H. Jhaveri, Z.V.P. Murthy, A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes, Desalination, 379 (2016) 137–154.
  5. E. Antón, J.I. Calvo, J.R. Álvarez, A. Hernández, S. Luque, Fitting approach to liquid–liquid displacement porosimetry based on the log-normal pore size distribution, J. Membr. Sci., 470 (2014) 219–228.
  6. J. Lin, W. Ye, M.-C. Baltaru, Y.P. Tang, N.J. Bernstein, P. Gao, S. Balta, M. Vlad, A. Volodin, A. Sotto, P. Luis, A.L. Zydney, B. Van der Bruggen, Tight ultrafiltration membranes for enhanced separation of dyes and Na2SO4 during textile wastewater treatment, J. Membr. Sci., 514 (2016) 217–228.
  7. C. Zhao, X. Zhou, Y. Yue, Determination of pore size and pore size distribution on the surface of hollow-fiber filtration membranes: a review of methods, Desalination, 129 (2000) 107–123.
  8. E. Akhondi, F. Zamani, J.W. Chew, W.B. Krantz, A.G. Fane, Improved design and protocol for evapoporometry determination of the pore-size distribution, J. Membr. Sci., 496 (2015) 334–343.
  9. S.-i. Nakao, Determination of pore size and pore size distribution: 3. Filtration membranes, J. Membr. Sci., 96 (1994) 131–165.
  10. S. Singh, K.C. Khulbe, T. Matsuura, P. Ramamurthy, Membrane characterization by solute transport and atomic force microscopy, J. Membr. Sci., 142 (1998) 111–127.
  11. L. Xu, S. Shahid, J. Shen, E.A.C. Emanuelsson, D.A. Patterson, A wide range and high resolution one-filtration molecular weight cut- off method for aqueous based nanofiltration and ultrafiltration membranes, J. Membr. Sci., 525 (2017) 304–311.
  12. Y.H. See Toh, X.X. Loh, K. Li, A. Bismarck, A.G. Livingston,”In search of a standard method for the characterisation of organic solvent nanofiltration membranes, J. Membr. Sci., 291 (2007) 120–125.
  13. C. Causserand, S. Rouaix, A. Akbari, P. Aimar, Improvement of a method for the characterization of ultrafiltration membranes by measurements of tracers retention, J. Membr. Sci., 238 (2004) 177–190.
  14. P. Mulherkar, R. van Reis, Flex test: A fluorescent dextran test for UF membrane characterization, J. Membr. Sci., 236 (2004) 171–182.
  15. K. Kimura, S. Toshima, G. Amy, Y. Watanabe, Rejection of neutral endocrine disrupting compounds (EDCs) and pharmaceutical active compounds (PhACs) by RO membranes, J. Membr. Sci., 245 (2004) 71–78.
  16. A.D. Revchuk, I.H. Suffet, Ultrafiltration separation of aquatic natural organic matter: chemical probes for quality assurance, Water Res., 43 (2009) 3685–3692.
  17. H.K. Shon, S.-H. Kim, L. Erdei, S. Vigneswaran, Analytical methods of size distribution for organic matter in water and wastewater, Korean J. Chem. Eng., 23 (2006) 581–591.
  18. C.M. Tam, A.Y. Tremblay, Membrane pore characterization— comparison between single and multicomponent solute probe techniques, J. Membr. Sci., 57 (1991) 271–287.
  19. S. Lee, G. Park, G. Amy, S.-K. Hong, S.-H. Moon, D.-H. Lee, J. Cho, Determination of membrane pore size distribution using the fractional rejection of nonionic and charged macromolecules, J. Membr. Sci., 201 (2002) 191–201.
  20. A. Sharma, D.G. Bracewell, Characterisation of porous anodic alumina membranes for ultrafiltration of protein nanoparticles as a size mimic of virus particles, J. Membr. Sci., 580 (2019) 77–91.
  21. T. Van Gestel, H. Kruidhof, D.H.A. Blank, H.J.M. Bouwmeester, ZrO2 and TiO2 membranes for nanofiltration and pervaporation: Part 1. Preparation and characterization of a corrosion-resistant ZrO2 nanofiltration membrane with a MWCO<300, J. Membr. Sci., 284 (2006) 128–136.
  22. E. Lahrsen, A.-K. Schoenfeld, S. Alban, Size-dependent pharmacological activities of differently degraded fucoidan fractions from Fucus vesiculosus, Carbohydr. Polym., 189 (2018) 162–168.
  23. J. Lin, C.Y. Tang, C. Huang, Y.P. Tang, W. Ye, J. Li, J. Shen, R. Van den Broeck, J. Van Impe, A. Volodin, C. Van Haesendonck, A. Sotto, P. Luis, B. Van der Bruggen, A comprehensive physico-chemical characterization of superhydrophilic loose nanofiltration membranes, J. Membr. Sci., 501 (2016) 1–14.
  24. W. Xu, Q. Ge, Novel functionalized forward osmosis (FO) membranes for FO desalination: improved process performance and fouling resistance, J. Membr. Sci., 555 (2018) 507–516.
  25. P.H.H. Duong, T.-S. Chung, Application of thin film composite membranes with forward osmosis technology for the separation of emulsified oil–water, J. Membr. Sci., 452 (2014) 117–126.
  26. W. Walton, Feret‘s statistical diameter as a measure of particle size, Nature, 162 (1948) 329.
  27. S. Teramachi, A. Hasegawa, M. Akatsuka, A. Yamashita, N. Takemoto, Molecular weight distribution and correlation between chemical composition and molecular weight in a high-conversion copolymer of styrene-methyl acrylate, Macromolecules, 11 (1978) 1206–1210.
  28. J.M. Ferra, A.M. Mendes, M.R.N. Costa, F.D. Magalhães, L.H. Carvalho, Characterization of urea-formaldehyde resins by GPC/SEC and HPLC techniques: effect of ageing, J. Adhes. Sci. Technol., 24 (2010) 1535–1551.
  29. A.V. Shyichuk, D.Y. Stavychna, J.R. White, Effect of tensile stress on chain scission and crosslinking during photo-oxidation of polypropylene, Polym. Degrad. Stab., 72 (2001) 279–285.