References
- K.F.M. Yunos, N.A. Mazlan, M.N.M. Naim, A.S. Baharuddin,
A.R. Hassan, Ultrafiltration of palm oil mill effluent: effects of
operational pressure and stirring speed on performance and
membranes fouling, Environ. Eng. Res., 24 (2019) 263-270.
- F.E. Ahmed, B.S. Lalia, R. Hashaikeh, A review on electrospinning
for membrane fabrication: challenges and applications,
Desalination, 356 (2015) 15–30.
- C. Emin, E. Kurnia, I. Katalia, M. Ulbricht, Polyarylsulfonebased
blend ultrafiltration membranes with combined size and
charge selectivity for protein separation, Sep. Purif. Technol.,
193 (2018) 127–138.
- J.H. Jhaveri, Z.V.P. Murthy, A comprehensive review on
anti-fouling nanocomposite membranes for pressure driven
membrane separation processes, Desalination, 379 (2016)
137–154.
- E. Antón, J.I. Calvo, J.R. Álvarez, A. Hernández, S. Luque,
Fitting approach to liquid–liquid displacement porosimetry
based on the log-normal pore size distribution, J. Membr. Sci.,
470 (2014) 219–228.
- J. Lin, W. Ye, M.-C. Baltaru, Y.P. Tang, N.J. Bernstein, P. Gao,
S. Balta, M. Vlad, A. Volodin, A. Sotto, P. Luis, A.L. Zydney, B.
Van der Bruggen, Tight ultrafiltration membranes for enhanced
separation of dyes and Na2SO4 during textile wastewater
treatment, J. Membr. Sci., 514 (2016) 217–228.
- C. Zhao, X. Zhou, Y. Yue, Determination of pore size and
pore size distribution on the surface of hollow-fiber filtration
membranes: a review of methods, Desalination, 129 (2000)
107–123.
- E. Akhondi, F. Zamani, J.W. Chew, W.B. Krantz, A.G. Fane,
Improved design and protocol for evapoporometry determination
of the pore-size distribution, J. Membr. Sci., 496 (2015)
334–343.
- S.-i. Nakao, Determination of pore size and pore size
distribution: 3. Filtration membranes, J. Membr. Sci., 96 (1994)
131–165.
- S. Singh, K.C. Khulbe, T. Matsuura, P. Ramamurthy, Membrane
characterization by solute transport and atomic force
microscopy, J. Membr. Sci., 142 (1998) 111–127.
- L. Xu, S. Shahid, J. Shen, E.A.C. Emanuelsson, D.A. Patterson,
A wide range and high resolution one-filtration molecular
weight cut- off method for aqueous based nanofiltration and
ultrafiltration membranes, J. Membr. Sci., 525 (2017) 304–311.
- Y.H. See Toh, X.X. Loh, K. Li, A. Bismarck, A.G. Livingston,”In
search of a standard method for the characterisation of organic
solvent nanofiltration membranes, J. Membr. Sci., 291 (2007)
120–125.
- C. Causserand, S. Rouaix, A. Akbari, P. Aimar, Improvement of
a method for the characterization of ultrafiltration membranes
by measurements of tracers retention, J. Membr. Sci., 238 (2004)
177–190.
- P. Mulherkar, R. van Reis, Flex test: A fluorescent dextran test
for UF membrane characterization, J. Membr. Sci., 236 (2004)
171–182.
- K. Kimura, S. Toshima, G. Amy, Y. Watanabe, Rejection of neutral
endocrine disrupting compounds (EDCs) and pharmaceutical
active compounds (PhACs) by RO membranes, J. Membr. Sci.,
245 (2004) 71–78.
- A.D. Revchuk, I.H. Suffet, Ultrafiltration separation of aquatic
natural organic matter: chemical probes for quality assurance,
Water Res., 43 (2009) 3685–3692.
- H.K. Shon, S.-H. Kim, L. Erdei, S. Vigneswaran, Analytical
methods of size distribution for organic matter in water and
wastewater, Korean J. Chem. Eng., 23 (2006) 581–591.
- C.M. Tam, A.Y. Tremblay, Membrane pore characterization—
comparison between single and multicomponent solute probe
techniques, J. Membr. Sci., 57 (1991) 271–287.
- S. Lee, G. Park, G. Amy, S.-K. Hong, S.-H. Moon, D.-H. Lee,
J. Cho, Determination of membrane pore size distribution using
the fractional rejection of nonionic and charged macromolecules,
J. Membr. Sci., 201 (2002) 191–201.
- A. Sharma, D.G. Bracewell, Characterisation of porous anodic
alumina membranes for ultrafiltration of protein nanoparticles
as a size mimic of virus particles, J. Membr. Sci., 580 (2019)
77–91.
- T. Van Gestel, H. Kruidhof, D.H.A. Blank, H.J.M. Bouwmeester,
ZrO2 and TiO2 membranes for nanofiltration and pervaporation:
Part 1. Preparation and characterization of a corrosion-resistant
ZrO2 nanofiltration membrane with a MWCO<300, J. Membr.
Sci., 284 (2006) 128–136.
- E. Lahrsen, A.-K. Schoenfeld, S. Alban, Size-dependent
pharmacological activities of differently degraded fucoidan
fractions from Fucus vesiculosus, Carbohydr. Polym., 189 (2018)
162–168.
- J. Lin, C.Y. Tang, C. Huang, Y.P. Tang, W. Ye, J. Li, J. Shen, R.
Van den Broeck, J. Van Impe, A. Volodin, C. Van Haesendonck,
A. Sotto, P. Luis, B. Van der Bruggen, A comprehensive
physico-chemical characterization of superhydrophilic loose
nanofiltration membranes, J. Membr. Sci., 501 (2016) 1–14.
- W. Xu, Q. Ge, Novel functionalized forward osmosis (FO)
membranes for FO desalination: improved process performance
and fouling resistance, J. Membr. Sci., 555 (2018) 507–516.
- P.H.H. Duong, T.-S. Chung, Application of thin film composite
membranes with forward osmosis technology for the separation
of emulsified oil–water, J. Membr. Sci., 452 (2014) 117–126.
- W. Walton, Feret‘s statistical diameter as a measure of particle
size, Nature, 162 (1948) 329.
- S. Teramachi, A. Hasegawa, M. Akatsuka, A. Yamashita,
N. Takemoto, Molecular weight distribution and correlation
between chemical composition and molecular weight in
a high-conversion copolymer of styrene-methyl acrylate,
Macromolecules, 11 (1978) 1206–1210.
- J.M. Ferra, A.M. Mendes, M.R.N. Costa, F.D. Magalhães, L.H.
Carvalho, Characterization of urea-formaldehyde resins by
GPC/SEC and HPLC techniques: effect of ageing, J. Adhes. Sci.
Technol., 24 (2010) 1535–1551.
- A.V. Shyichuk, D.Y. Stavychna, J.R. White, Effect of tensile stress
on chain scission and crosslinking during photo-oxidation of
polypropylene, Polym. Degrad. Stab., 72 (2001) 279–285.