References

  1. R.G. Raluy, L. Serra, J. Uche, Life cycle assessment of desalination technologies integrated with renewable energies, Desalination, 183 (2005) 81–93.
  2. A.D. Khawaji, I.K. Kutubkhanah, J.-M. Wie, Advances in seawater desalination technologies, Desalination, 221 (2008) 47–69.
  3. V.G. Gude, Desalination and sustainability - an appraisal and current perspective, Water Res., 89 (2016) 87–106.
  4. N. Ghaffour, J. Bundschuh, H. Mahmoudi, M.F.A. Goosen, Renewable energy-driven desalination technologies: a comprehensive review on challenges and potential applications of integrated systems, Desalination, 356 (2015) 94–114.
  5. S.A. Kalogirou, Seawater desalination using renewable energy sources, Prog. Energy Combust., 31 (2005) 242–281.
  6. M.A. Abdelkareem, M. El Haj Assad, E.T. Sayed, B. Soudan, Recent progress in the use of renewable energy sources to power water desalination plants, Desalination, 435 (2018) 97–113.
  7. E. Tzen, R. Morris, Renewable energy sources for desalination, Sol. Energy, 75 (2003) 375–379.
  8. A. Al-Karaghouli, D. Renne, L.L. Kazmerski, Solar and wind opportunities for water desalination in the Arab regions, Renewable Sustainable Energy Rev., 13 (2009) 2397–2407.
  9. N. Ghaffour, T.M. Missimer, G.L. Amy, Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability, Desalination, 309 (2013) 197–207.
  10. M.A. Eltawil, Z. Zhengming, L. Yuan, A review of renewable energy technologies integrated with desalination systems, Renewable Sustainable Energy Rev., 13 (2009) 2245–2262.
  11. N. Ghaffour, I.M. Mujtaba, Desalination using renewable energy, Desalination, 435 (2018) 1–2.
  12. A. Ali, R.A. Tufa, F. Macedonio, E. Curcio, E. Drioli, Membrane technology in renewable-energy-driven desalination, Renewable Sustainable Energy Rev., 81 (2018) 1–21.
  13. V. Belessiotis, E. Delyannis, Water shortage and renewable energies (RE) desalination — possible technological applications, Desalination, 139 (2001) 133–138.
  14. LCAQM District, Agricultural and Open Burning, California Air Resouces Board, Lake County Air Quality Management District, Lakeport, CA, Available at: https://www.arb.ca.gov/smp/resburn/factsheets/lc_agburn_en.pdf.
  15. Y. Zhou, R.S.J. Tol, Evaluating the costs of desalination and water transport, Water Res. Res., 41 (2005), https://doi.org/10.1029/2004WR003749.
  16. K. Al-Anezi, N. Hilal, Scale formation in desalination plants: effect of carbon dioxide solubility, Desalination, 204 (2007) 385–402.
  17. K. Krömer, S. Will, K. Loisel, S. Nied, J. Detering, A. Kempter, H. Glade, Scale formation and mitigation of mixed salts in horizontal tube falling film evaporators for seawater desalination, Heat Transfer Eng., 36 (2015) 750–762.
  18. A. Drak, K. Glucina, M. Busch, D. Hasson, J.-M. Laîne, R. Semiat, Laboratory technique for predicting the scaling propensity of RO feed waters, Desalination, 132 (2000) 233–242.
  19. D. Hasson, A. Drak, R. Semiat, Induction times induced in an RO system by antiscalants delaying CaSO4 precipitation, Desalination, 157 (2003) 193–207.
  20. F.H. Butt, F. Rahman, U. Baduruthamal, Pilot plant evaluation of advanced vs. conventional scale inhibitors for RO desalination, Desalination, 103 (1995) 189–198.
  21. G.R. Lashkaripour, M. Zivdar, Desalination of brackish groundwater in Zahedan city in Iran, Desalination, 177 (2005) 1–5.
  22. A. Rahardianto, W.-Y. Shih, R.-W. Lee, Y. Cohen, Diagnostic characterization of gypsum scale formation and control in RO membrane desalination of brackish water, J. Membr. Sci., 279 (2006) 655–668.
  23. S.B. Ahmed, M. Tlili, M.B. Amor, H.B. Bacha, B. Elleuch, Calcium sulphate scale prevention in a desalinatïon unit using the SMCEC technique, Desalination, 167 (2004) 311–318.
  24. R. Semiat, D. Hasson, Water desalination, Rev. Chem. Eng., 28 (2012) 43–60.
  25. D.S. Likhachev, F.-C. Li, Large-scale water desalination methods: a review and new perspectives, Desal. Wat. Treat., 51 (2013) 2836–2849.
  26. A. Al-Karaghouli, L.L. Kazmerski, Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes, Renewable Sustainable Energy Rev., 24 (2013) 343–356.
  27. G. Braun, W. Hater, C.z. Kolk, C. Dupoiron, T. Harrer, T. Götz, Investigations of silica scaling on reverse osmosis membranes, Desalination, 250 (2010) 982–984.
  28. M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment, Science, 333 (2011) 712–717.
  29. A. Hanson, W. Zachritz, K. Stevens, L. Mimbela, R. Polka, L. Cisneros, Distillate water quality of a single-basin solar still: laboratory and field studies, Sol. Energy, 76 (2004) 635–645.
  30. S. Kalogirou, Survey of solar desalination systems and system selection, Energy, 22 (1997) 69–81.
  31. K.C. Ng, K. Thu, Y. Kim, A. Chakraborty, G. Amy, Adsorption desalination: an emerging low-cost thermal desalination method, Desalination, 308 (2013) 161–179.
  32. N. Ghaffour, S. Lattemann, T. Missimer, K.C. Ng, S. Sinha, G. Amy, Renewable energy-driven innovative energy-efficient desalination technologies, Appl. Energy, 136 (2014) 1155–1165.
  33. K. Thu, Y.-D. Kim, G. Amy, W.G. Chun, K.C. Ng, A hybrid multi-effect distillation and adsorption cycle, Appl. Energy, 104 (2013) 810–821.
  34. K.C. Ng, X. Wang, Y.S. Lim, B.B. Saha, A. Chakarborty, S. Koyama, A. Akisawa, T. Kashiwagi, Experimental study on performance improvement of a four-bed adsorption chiller by using heat and mass recovery, Int. J. Heat Mass Transfer, 49 (2006) 3343–3348.
  35. M.F.A. Goosen, H. Mahmoudi, N. Ghaffour, Today’s and future challenges in applications of renewable energy technologies for desalination, Crit. Rev. Env. Sci. Technol., 44 (2014) 929–999.
  36. G. Zaragoza, A. Ruiz-Aguirre, E. Guillén-Burrieza, Efficiency in the use of solar thermal energy of small membrane desalination systems for decentralized water production, Appl. Energy, 130 (2014) 491–499.
  37. J. Bundschuh, N. Ghaffour, H. Mahmoudi, M. Goosen, S. Mushtaq, J. Hoinkis, Low-cost low-enthalpy geothermal heat for fresh water production: innovative applications using thermal desalination processes, Renewable Sustainable Energy Rev., 43 (2015) 196–206.
  38. H.C. Duong, P. Cooper, B. Nelemans, T.Y. Cath, L.D. Nghiem, Evaluating energy consumption of air gap membrane distillation for seawater desalination at pilot scale level, Sep. Purif. Technol., 166 (2016) 55–62.
  39. A. Alkhudhiri, N. Darwish, N. Hilal, Membrane distillation: a comprehensive review, Desalination, 287 (2012) 2–18.
  40. M. Khayet, Membranes and theoretical modeling of membrane distillation: a review, Adv. Colloid Interface Sci., 164 (2011) 56–88.
  41. E. Curcio, E. Drioli, Membrane distillation and related operations—a review, Sep. Purif. Rev., 34 (2005) 35–86.
  42. R. Semiat, Energy issues in desalination processes, Environ. Sci. Technol., 42 (2008) 8193–8201.
  43. G. Fiorenza, V.K. Sharma, G. Braccio, Techno-economic evaluation of a solar powered water desalination plant, Energy Convers. Manage., 44 (2003) 2217–2240.
  44. P.K. Sen, P.V. Sen, A. Mudgal, S.N. Singh, A small scale multipleeffect distillation (MED) unit for rural micro enterprises: Part II--parametric studies and performance analysis, Desalination, 279 (2011) 27–37.
  45. I.C. Karagiannis, P.G. Soldatos, Water desalination cost literature review and assessment, Desalination, 223 (2008) 448–456.
  46. J.E. Miller, Review of Water Resources and Desalination Technologies, SAND 2003–0800, Sandia National Laboratories: Albuquerque, NM, 2003, p. 54.
  47. A. Ophir, F. Lokiec, Advanced MED process for most economical sea water desalination, Desalination, 182 (2005) 187–198.
  48. S. Nisan, N. Benzarti, A comprehensive economic evaluation of integrated desalination systems using fossil fuelled and nuclear energies and including their environmental costs, Desalination, 229 (2008) 125–146.
  49. M. Methnani, Influence of fuel costs on seawater desalination options, Desalination, 205 (2007) 332–339.
  50. S. Gorjian, B. Ghobadian, Solar desalination: a sustainable solution to water crisis in Iran, Renewable Sustainable Energy Rev., 48 (2015) 571–584.
  51. J.H. Reif, W. Alhalabi, Solar-thermal powered desalination: its significant challenges and potential, Renewable Sustainable Energy Rev., 48 (2015) 152–165.
  52. C.M.A. Yadav, Water desalination system using solar heat: a review, Renewable Sustainable Energy Rev., 67 (2017) 1308–1330.
  53. V.G. Gude, N. Nirmalakhandan, S. Deng, A. Maganti, Low temperature desalination using solar collectors augmented by thermal energy storage, Appl. Energy, 91 (2012) 466–474.
  54. B.A. Akash, M.S. Mohsen, Potentials for development of hydropowered water desalination in Jordan, Renewable Energy, 13 (1998) 537–542.
  55. M. Murakami, Hydro-powered reverse osmosis (RO) desalination for co-generation: a Middle East case study, Desalination, 97 (1994) 301–311.
  56. C.T. Kiranoudis, N.G. Voros, Z.B. Maroulis, Wind energy exploitation for reverse osmosis desalination plants, Desalination, 109 (1997) 195–209.
  57. E. Tzen, K. Perrakis, P. Baltas, Design of a stand alone PV - desalination system for rural areas, Desalination, 119 (1998) 327–333.
  58. T. Ackermann, L. Söder, An overview of wind energy-status 2002, Renewable Sustainable Energy Rev., 6 (2002) 67–127.
  59. L. García-Rodríguez, V. Romero-Ternero, C. Gómez-Camacho, Economic analysis of wind-powered desalination, Desalination, 137 (2001) 259–265.
  60. M.S. Miranda, D. Infield, A wind-powered seawater reverseosmosis system without batteries, Desalination, 153 (2003) 9–16.
  61. Q. Ma, H. Lu, Wind energy technologies integrated with desalination systems: review and state-of-the-art, Desalination, 277 (2011) 274–280.
  62. M. Lenzen, J. Munksgaard, Energy and CO2 life-cycle analyses of wind turbines—review and applications, Renewable Energy, 26 (2002) 339–362.
  63. S.M. Habali, I.A. Saleh, Design of stand-alone brackish water desalination wind energy system for Jordan, Sol. Energy, 52 (1994) 525–532.
  64. R. Robinson, G. Ho, K. Mathew, Development of a reliable lowcost reverse osmosis desalination unit for remote communities, Desalination, 86 (1992) 9–26.
  65. A. Ophir, Desalination plant using low grade geothermal heat, Desalination, 40 (1982) 125–132.
  66. L. Awerbuch, T.E. Lindemuth, S.C. May, A.N. Rogers, Geothermal energy recovery process, Desalination, 19 (1976) 325–336.
  67. I. Houcine, F. Benjemaa, M.-H. Chahbani, M. Maalej, Renewable energy sources for water desalting in Tunisia, Desalination, 125 (1999) 123–132.
  68. E. Barbier, Geothermal energy technology and current status: an overview, Renewable Sustainable Energy Rev., 6 (2002) 3–65.
  69. M. Goosen, H. Mahmoudi, N. Ghaffour, Water desalination using geothermal energy, Energies, 3 (2010) 1423–1442.
  70. M. Downing, L.M. Eaton, R.L. Graham, M.H. Langholtz, R.D. Perlack, A.F. Turhollow Jr., B. Stokes, C.C. Brandt, U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry, Oak Ridge National Laboratory, 2011, p. 194.
  71. R.C. Brown, T.R. Brown, Biorenwable Resources: Engineering New Products From Agriculture, Wiley-Blackwell, Danvers, MA, 2014.
  72. M. Wright, R.C. Brown, Establishing the optimal sizes of different kinds of biorefineries, Biofuels, Bioprod. Biorefin., 1 (2007) 191–200.
  73. P. Quaak, H. Knoef, H. Stassen, Energy from Biomass: A Review of Combustion and Gasification Technologies, in Energy Series, The World Bank, Washington, D.C., 1999, p. 78.
  74. D.H. Kim, A review of desalting process techniques and economic analysis of the recovery of salts from retentates, Desalination, 270 (2011) 1–8.
  75. E.M. White, G. Latta, R.J. Alig, K.E. Skog, D.M. Adams, Biomass production from the U.S. forest and agriculture sectors in support of a renewable electricity standard, Energy Policy, 58 (2013) 64–74.
  76. A. Amiri, A. Al-Rawajfeh, C.E. Brewer, Simulation of smallscale thermal water desalination using biomass energy, Desal. Wat. Treat., 108 (2018) 65–75.
  77. R. Zanzi, K. Sjöström, E. Björnbom, Rapid pyrolysis of agricultural residues at high temperature, Biomass Bioenergy, 23 (2002) 357–366.
  78. C.D. Sheng, J.L.T. Azevedo, Estimating the higher heating value of biomass fuels from basic analysis data, Biomass Bioenergy, 28 (2005) 499–507.
  79. R.C. Brown, T.R. Brown, Economics of Biorenewable Resources, in Biorenewable Resources, Wiley Blackwell, Iowa State University, 2003, pp. 301–313.
  80. M. Erol, H. Haykiri-Acma, S. Kucukbayrak, Calorific value estimation of biomass from their proximate analyses data, Renewable Energy, 35 (2010) 170–173.
  81. B.M. Jenkins, L.L. Baxter, T.R. Miles, Combustion properties of biomass, Fuel Process. Technol., 54 (1998) 17–46.
  82. C. Branca, C. DiBlasi, Global kinetics of wood char devolatilization and combustion, Energy Fuels, 17 (2003) 1609–1615.
  83. K. Matsuoka, K. Kuramoto, T. Murakami, Y. Suzuki, Steam gasification of woody biomass in a circulating dual bubbling fluidized bed system, Energy Fuels, 22 (2008) 1980–1985.
  84. V. Skoulou, G. Koufodimos, Z. Samaras, A. Zabaniotou, Low temperature gasification of olive kernels in a 5-kW fluidized bed reactor for H2-rich producer gas, Int. J. Hydrogen Energy, 33 (2008) 6515–6524.
  85. G. Chen, J. Andries, Z. Luo, H. Spliethoff, Biomass pyrolysis/ gasification for product gas production: the overall investigation of parametric effects, Energy Convers. Manage., 44 (2003) 1875–1884.
  86. J. Park, Y. Lee, C. Ryu, Y.K. Park, Slow pyrolysis of rice straw: Analysis of products properties, carbon and energy yields, Bioresour. Technol., 155 (2014) 63–70.
  87. T.R. Brown, M.M. Wright, R.C. Brown, Estimating profitability of two biochar production scenarios: slow pyrolysis vs fast pyrolysis, Biofuels, Bioprod. Biorefin., 5 (2011) 54–68.
  88. J.W. Lee, M. Kidder, B.R. Evans, S. Paik, A.C. Buchanan, C.T. Garten, R.C. Brown, Characterization of biochars produced from cornstovers for soil amendment, Environ. Sci. Technol., 44 (2010) 7970–7974.
  89. Y. Lee, P.-R.-B. Eum, C. Ryu, Y.-K. Park, J.-H. Jung, S. Hyun, Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae 1, Bioresour. Technol., 130 (2013) 345–350.
  90. S. Shabangu, D. Woolf, E.M. Fisher, L.T. Angenent, J. Lehmann, Techno-economic analysis of biomass slow pyrolysis into different biochar and methanol concepts, Fuel, 117 (2014) 742–748.
  91. C.E. Brewer, K. Schmidt-Rohr, J.A. Satrio, R.C. Brown, Characterization of biochar from fast pyrolysis and gasification systems, Environ. Prog. Sustainable Energy, 28 (2009) 386–396.
  92. J. Ayoub, R. Alward, Water requirements and remote arid areas: the need for small-scale desalination, Desalination, 107 (1996) 131–147.
  93. P.V. Sen, K. Bhuwanesh, K. Ashutosh, Z. Engineer, S. Hegde, P.K. Sen, R. Lal, Micro-scale multiple-effect distillation system for low steam inputs, Procedia Eng., 56 (2013) 63–67.
  94. P.K. Sen, P.V. Sen, A. Mudgal, S.N. Singh, S.K. Vyas, P. Davies, A small scale multiple-effect distillation (MED) unit for rural micro enterprises: Part I—design and fabrication, Desalination, 279 (2011) 15–26.
  95. P.K. Sen, P.V. Sen, A. Mudgal, S.N. Singh, A small scale multieffect distillation (MED) unit for rural micro enterprises: Part- III—heat transfer aspects, Desalination, 279 (2011) 38–46.
  96. L. Kelley, H. Elasaad, S. Dubowsky, Autonomous operation and maintenance of small-scale PVRO systems for remote communities, Desal. Wat. Treat., 55 (2015) 1–13.
  97. A.F. Abdul-Fattah, Selection of solar desalination system for supply of water in remote arid zones, Desalination, 60 (1986) 165–189.
  98. D. Manolakos, G. Papadakis, D. Papantonis, S. Kyritsis, A simulation-optimvisation programme for designing hybrid energy systems for supplying electricity and fresh water through desalination to remote areas: case study: the Merssini village, Donoussa Island, Aegean Sea, Greece, Energy, 26 (2001) 679–704.
  99. B. Bouchekima, A small solar desalination plant for the production of drinking water in remote arid areas of southern Algeria, Desalination, 159 (2003) 197–204.
  100. T. Szacsvay, P. Hofer-Noser, M. Posnansky, Technical and economic aspects of small-scale solar-pond-powered seawater desalination systems, Desalination, 122 (1999) 185–193.
  101. M. Gökçek, Ö.B. Gökçek, Technical and economic evaluation of fresh water production from a wind-powered small-scale seawater reverse osmosis system (WP-SWRO), Desalination, 381 (2016) 47–57.
  102. M. Gökçek, Integration of hybrid power (wind-photovoltaicdiesel- battery) and seawater reverse osmosis systems for small-scale desalination applications, Desalination, 435 (2018) 210–220.
  103. R. Segurado, J.F.A. Madeira, M. Costa, N. Duić, M.G. Carvalho, Optimization of a wind powered desalination and pumped hydro storage system, Appl. Energy, 177 (2016) 487–499.
  104. P. Malek, J.M. Ortiz, H.M.A. Schulte-Herbrüggen, Decentralized desalination of brackish water using an electrodialysis system directly powered by wind energy, Desalination, 377 (2016) 54–64.
  105. A. Maleki, M.G. Khajeh, M.A. Rosen, Weather forecasting for optimization of a hybrid solar-wind–powered reverse osmosis water desalination system using a novel optimizer approach, Energy, 114 (2016) 1120–1134.
  106. W. Lai, Q. Ma, H. Lu, S. Weng, J. Fan, H. Fang, Effects of wind intermittence and fluctuation on reverse osmosis desalination process and solution strategies, Desalination, 395 (2016) 17–27.
  107. V.G. Gude, Energy storage for desalination processes powered by renewable energy and waste heat sources, Appl. Energy, 137 (2015) 877–898.
  108. K. Stecher, A. Brosowski, D. Thran, Biomass Potential in Africa, International Renewable Energy Agency, 2013.
  109. D. Hou, J. Wang, X. Sun, Z. Luan, C. Zhao, X. Ren, Boron removal from aqueous solution by direct contact membrane distillation, J. Hazard. Mater., 177 (2010) 613–619.
  110. A. Kullab, A.R. Martin, A. Sääsk, Removal of Toxic Compounds from Water by Membrane Distillation (Case Study on Arsenic), A. Figoli, A. Criscuoli, Ed., Sustainable Membrane Technology for Water and Wastewater Treatment, 2017, Springer, Singapore, pp. 243–263.