References
- B.M. Peyton, T. Wilson, D.R. Yonge, Kinetics of phenol
biodegradation in high salt solutions, Water Res., 36 (2002)
4811–4820.
- K. Bakker, Water security: research challenges and opportunities,
Science, 337 (2012) 914–915.
- I. Kamika, M.N.B. Momba, Comparing the tolerance limits of
selected bacterial and protozoan species to nickel in wastewater
systems, Sci. Total Environ., 410 (2011) 172–181.
- I. Kamika, M.N.B. Momba, Assessing the resistance and
bioremediation ability of selected bacterial and protozoan
species to heavy metals in metal-rich industrial wastewater,
BMC Microbiol., 13 (2013) 28.
- I. Kamika, M.N.B. Momba, Microbial diversity of Emalahleni
mine water in South Africa and tolerance ability of the
predominant organism to vanadium and nickel, PloS One,
9 (2014) 86189.
- E. Corcoran, C. Nelleman, E. Baker, R. Bos, D. Osborn,
H. Savelli, Eds., Sick Water? The Central Role of Wastewater
Management in Sustainable Development: A Rapid Response
Assessment, UNEP (United Nations Environment Programme),
UN-HABITAT, GRID-Arendal, 2010.
- J.E. Hardoy, D. Mitlin, D. Satterthwaite, Environmental
Problems in an Urbanizing World: Finding Solutions in Cities
in Africa, Asia and Latin America, Routledge, New York, USA,
2013.
- M.C. Ncibi, B. Mahjoub, O. Mahjoub, M. Sillanpää, Remediation
of emerging pollutants in contaminated wastewater and
aquatic environments: biomass‐based technologies, Clean Soil
Air Water, 45 (2017), https://doi.org/10.1002/clen.201700101.
- C. Hui, C.M. Shen, J. Tian, L.H. Bao, H. Ding, C. Li, Y. Tian,
X.Z. Shi, H.-J. Gao, Core-shell Fe3O4@SiO2 nanoparticles
synthesized with well-dispersed hydrophilic Fe3O4 seeds,
Nanoscale, 3 (2011) 701–705.
- M.R. Wiesner, G.V. Lowry, K.L. Jones, M.F. Hochella Jr.,
R.T. Di Giulio, E. Casman, E.S. Bernhardt, Decreasing uncertainties
in assessing environmental exposure, risk, and ecological
implications of nanomaterials, Environ. Sci. Technol.,
43 (2009) 6458–6462.
- R.D. Handy, B.J. Shaw, Toxic effects of nanoparticles and
nanomaterials: implications for public health, risk assessment
and the public perception of nanotechnology, Health Risk Soc.,
9 (2007) 125–144.
- H. Shi, R. Magaye, V. Castranova, J. Zhao, Titanium dioxide
nanoparticles: a review of current toxicological data, Part. Fibre
Toxicol., 10 (2013) 1.
- A. Ventosa, J.J. Nieto, A. Oren, Biology of moderately
halophilic aerobic bacteria, Microbiol. Mol. Biol. Rev., 62 (1998)
504–544.
- K.H. Lee, C.K. Chiang, Z.H. Lin, H.T. Chang, Determining
enediol compounds in tea using surface-assisted laser
desorption/ionization mass spectrometry with titanium dioxide
nanoparticle matrices, Rapid Commun. Mass Spectrom., 21 (2007)
2023–2030.
- R. Chen, L.L. Huo, X.F. Shi, R. Bai, Z.J. Zhang, Y.L. Zhao,
Y.Z. Chang, C.Y. Chen, Endoplasmic reticulum stress induced
by zinc oxide nanoparticles is an earlier biomarker for nanotoxicological
evaluation, ACS Nano, 8 (2014) 2562–2574.
- P.D. Schloss, S.L. Westcott, T. Ryabin, J.R. Hall, M. Hartmann,
E.B. Hollister, R.A. Lesniewski, B.B. Oakley, D.H. Parks,
C.J. Robinson, J.W. Sahl, B. Stres, G.G. Thallinger, D.J. Van
Horn, C.F. Weber, Introducing mothur: open-source, platformindependent,
community-supported software for describing
and comparing microbial communities, Appl. Environ.
Microbiol., 75 (2009) 7537–7541.
- T.M. Caton, L.R. Witte, H.D. Ngyuen, J.A. Buchheim, M.A.
Buchheim, M.A. Schneegurt, Halotolerant aerobic heterotrophic
bacteria from the Great Salt Plains of Oklahoma, Microb. Ecol.,
48 (2004) 449–462.
- J.M. Lim, C.O. Jeon, S.M. Song, C.J. Kim, Pontibacillus
chungwhensis gen. nov., sp. nov., a moderately halophilic Gram-positive
bacterium from a solar saltern in Korea, Int. J. Syst.
Evol. Microbiol., 55 (2005) 165–170.
- L.O. Kachieng’a, M.N.B. Momba, Bioremediation of fats and
oils in domestic wastewater by selected protozoan isolates,
Water Air Soil Pollut., 226 (2015) 1–15.
- E. Jones, M. Qadir, M.T.H. van Vliet, V. Smakhtin, S.-m. Kang,
The state of desalination and brine production: a global outlook,
Sci. Total Environ., 657 (2019) 1343–1356.
- A. Pérez-González, A.M. Urtiaga, IbáñezI, R. Ortiz, State of the
art and review on the treatment technologies of water reverse
osmosis concentrates. Water Res. 46(2012) 267–283.
- C.A. Santos, A.M. Vieira, H.L. Fernandes, J.A. Empis, J.M.
Novais, Optimisation of the biological treatment of hypersaline
wastewater from Dunaliella salina carotenogenesis, J. Chem.
Technol. Biotechnol., 76 (2001) 1147–1153.
- C.R. Woolard, R.L. Irvine, Biological treatment of hypersaline
wastewater by a biofilm of halophilic bacteria, Water Environ.
Res., 66 (1994) 230–235.
- C.R. Tsai, J.L. Garcia, B.K. Patel, J.L. Cayol, L. Baresi, R.A. Mah,
Haloanaerobium alcaliphilum sp. nov., an anaerobic moderate
halophile from the sediments of Great Salt Lake, Utah, Int. J.
Syst. Evol. Microbiol., 45 (1995) 301–307.
- A. Poli, E. Esposito, P. Orlando, L. Lama, A. Giordano,
F. de Appolonia, B. Nicolaus, A. Gambacorta, Halomonas
alkaliantarctica sp. nov., isolated from saline lake Cape
Russell in Antarctica, an alkalophilic moderately halophilic,
exopolysaccharide-producing bacterium, Syst. Appl. Microbiol.,
30 (2007) 31–38.
- S. Dassarma, P. Dassarma, In: eLS, Halophiles, John Wiley
& Sons Ltd., Chichester, 2012, doi: 10.1002/9780470015902.
a0000394.pub3.
- A. Roohi, I. Ahmed, M. Iqbal, M. Jamil, Preliminary isolation
and characterization of halotolerant and halophilic bacteria
from salt mines of Karak, Pakistan, Pak. J. Bot., 44 (2012)
365–370.
- M.R. Mormile, M.F. Romine, M.T. Garcia, A. Ventosa, T.J. Bailey,
B.M. Peyton, Halomonas campisalis sp. nov., a denitrifying,
moderately haloalkaliphilic bacterium, Syst. Appl. Microbiol.,
22 (1999) 551–558.
- M.A. Amoozegar, F. Malekzadeh, K.A. Malik, P. Schumann,
C. Spröer, Halobacillus karajensis sp. nov., a novel moderate
halophile, Int. J. Syst. Evol. Microbiol., 153 (2003) 1059–1063.
- M.A. Amoozegar, A.Z. Fatemi, H.R. Karbalaei-Heidari,
M.R. Razavi, Production of an extracellular alkaline metalloprotease
from a newly isolated, moderately halophile, Salinivibrio
sp. strain AF-2004, J. Microbiol. Res., 162 (2007) 369–377.
- G.A. Somerville, R.A. Proctor, Cultivation conditions and the
diffusion of oxygen into culture media: the rationale for the
flask-to-medium ratio in microbiology, BMC Microbiol., 13
(2013) 9.
- R.H. Vreeland, C.D. Litchfield, E.L. Martin, E. Elliot, Halomonas
elongata, a new genus and species of extremely salt-tolerant
bacteria, Int. J. Syst. Evol. Microbiol., 30 (1980) 485–495.
- A. Uygur, F. Kargı, Salt inhibition on biological nutrient removal
from saline wastewater in a sequencing batch reactor, Enzyme
Microb. Technol., 34 (2004) 313–318.
- H. Mu, Y. Chen, N. Xiao, Effects of metal oxide nanoparticles
(TiO2, Al2O3, SiO2 and ZnO) on waste activated sludge anaerobic
digestion, Bioresour. Technol., 102 (2011) 10305–10311.
- R. Sinha, R. Karan, A. Sinha, S.K. Khare, Interaction and
nanotoxic effect of ZnO and Ag nanoparticles on mesophilic
and halophilic bacterial cells, Bioresour. Technol., 102 (2011)
1516–1520.
- R. Sinha, S.K. Khare, Differential interactions of halophilic and
non-halophilic proteases with nanoparticles, Sustainable Chem.
Processes, 2 (2014) 1–8.
- M.A. Maurer-Jones, I.L. Gunsolus, C.J. Murphy, C.L. Haynes,
Toxicity of engineered nanoparticles in the environment, Anal.
Chem., 85 (2013) 3036–3049.
- M. Megharaj, S. Avudainayagam, R. Naidu, Toxicity of
hexavalent chromium and its reduction by bacteria isolated
from soil contaminated with tannery waste, Curr. Microbiol.,
47 (2003) 51–54.
- G. Dönmez, Z. Aksu, Removal of chromium(VI) from saline
wastewaters by Dunaliella species, Process Biochem., 38 (2002)
751–762.
- G. Dönmez, N. Koçberber, Bioaccumulation of hexavalent
chromium by enriched microbial cultures obtained from
molasses and NaCl containing media, Process Biochem.,
40 (2005) 2493–2498.
- Z. Sheng, Y. Liu, Effects of silver nanoparticles on wastewater
biofilms, Water Res., 45 (2011) 6039–6050.
- B.K. Singh, A. Walker, Microbial degradation of organophosphorus
compounds, FEMS Microbiol. Rev., 30 (2006)
428–471.
- S. le Borgne, D. Paniagua, R. Vazquez-Duhalt, Biodegradation
of organic pollutants by halophilic bacteria and archaea, J. Mol.
Microbiol. Biotechnol., 15 (2008) 74–92.