References

  1. B.M. Peyton, T. Wilson, D.R. Yonge, Kinetics of phenol biodegradation in high salt solutions, Water Res., 36 (2002) 4811–4820.
  2. K. Bakker, Water security: research challenges and opportunities, Science, 337 (2012) 914–915.
  3. I. Kamika, M.N.B. Momba, Comparing the tolerance limits of selected bacterial and protozoan species to nickel in wastewater systems, Sci. Total Environ., 410 (2011) 172–181.
  4. I. Kamika, M.N.B. Momba, Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater, BMC Microbiol., 13 (2013) 28.
  5. I. Kamika, M.N.B. Momba, Microbial diversity of Emalahleni mine water in South Africa and tolerance ability of the predominant organism to vanadium and nickel, PloS One, 9 (2014) 86189.
  6. E. Corcoran, C. Nelleman, E. Baker, R. Bos, D. Osborn, H. Savelli, Eds., Sick Water? The Central Role of Wastewater Management in Sustainable Development: A Rapid Response Assessment, UNEP (United Nations Environment Programme), UN-HABITAT, GRID-Arendal, 2010.
  7. J.E. Hardoy, D. Mitlin, D. Satterthwaite, Environmental Problems in an Urbanizing World: Finding Solutions in Cities in Africa, Asia and Latin America, Routledge, New York, USA, 2013.
  8. M.C. Ncibi, B. Mahjoub, O. Mahjoub, M. Sillanpää, Remediation of emerging pollutants in contaminated wastewater and aquatic environments: biomass‐based technologies, Clean Soil Air Water, 45 (2017), https://doi.org/10.1002/clen.201700101.
  9. C. Hui, C.M. Shen, J. Tian, L.H. Bao, H. Ding, C. Li, Y. Tian, X.Z. Shi, H.-J. Gao, Core-shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds, Nanoscale, 3 (2011) 701–705.
  10. M.R. Wiesner, G.V. Lowry, K.L. Jones, M.F. Hochella Jr., R.T. Di Giulio, E. Casman, E.S. Bernhardt, Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials, Environ. Sci. Technol., 43 (2009) 6458–6462.
  11. R.D. Handy, B.J. Shaw, Toxic effects of nanoparticles and nanomaterials: implications for public health, risk assessment and the public perception of nanotechnology, Health Risk Soc., 9 (2007) 125–144.
  12. H. Shi, R. Magaye, V. Castranova, J. Zhao, Titanium dioxide nanoparticles: a review of current toxicological data, Part. Fibre Toxicol., 10 (2013) 1.
  13. A. Ventosa, J.J. Nieto, A. Oren, Biology of moderately halophilic aerobic bacteria, Microbiol. Mol. Biol. Rev., 62 (1998) 504–544.
  14. K.H. Lee, C.K. Chiang, Z.H. Lin, H.T. Chang, Determining enediol compounds in tea using surface-assisted laser desorption/ionization mass spectrometry with titanium dioxide nanoparticle matrices, Rapid Commun. Mass Spectrom., 21 (2007) 2023–2030.
  15. R. Chen, L.L. Huo, X.F. Shi, R. Bai, Z.J. Zhang, Y.L. Zhao, Y.Z. Chang, C.Y. Chen, Endoplasmic reticulum stress induced by zinc oxide nanoparticles is an earlier biomarker for nanotoxicological evaluation, ACS Nano, 8 (2014) 2562–2574.
  16. P.D. Schloss, S.L. Westcott, T. Ryabin, J.R. Hall, M. Hartmann, E.B. Hollister, R.A. Lesniewski, B.B. Oakley, D.H. Parks, C.J. Robinson, J.W. Sahl, B. Stres, G.G. Thallinger, D.J. Van Horn, C.F. Weber, Introducing mothur: open-source, platformindependent, community-supported software for describing and comparing microbial communities, Appl. Environ. Microbiol., 75 (2009) 7537–7541.
  17. T.M. Caton, L.R. Witte, H.D. Ngyuen, J.A. Buchheim, M.A. Buchheim, M.A. Schneegurt, Halotolerant aerobic heterotrophic bacteria from the Great Salt Plains of Oklahoma, Microb. Ecol., 48 (2004) 449–462.
  18. J.M. Lim, C.O. Jeon, S.M. Song, C.J. Kim, Pontibacillus chungwhensis gen. nov., sp. nov., a moderately halophilic Gram-positive bacterium from a solar saltern in Korea, Int. J. Syst. Evol. Microbiol., 55 (2005) 165–170.
  19. L.O. Kachieng’a, M.N.B. Momba, Bioremediation of fats and oils in domestic wastewater by selected protozoan isolates, Water Air Soil Pollut., 226 (2015) 1–15.
  20. E. Jones, M. Qadir, M.T.H. van Vliet, V. Smakhtin, S.-m. Kang, The state of desalination and brine production: a global outlook, Sci. Total Environ., 657 (2019) 1343–1356.
  21. A. Pérez-González, A.M. Urtiaga, IbáñezI, R. Ortiz, State of the art and review on the treatment technologies of water reverse osmosis concentrates. Water Res. 46(2012) 267–283.
  22. C.A. Santos, A.M. Vieira, H.L. Fernandes, J.A. Empis, J.M. Novais, Optimisation of the biological treatment of hypersaline wastewater from Dunaliella salina carotenogenesis, J. Chem. Technol. Biotechnol., 76 (2001) 1147–1153.
  23. C.R. Woolard, R.L. Irvine, Biological treatment of hypersaline wastewater by a biofilm of halophilic bacteria, Water Environ. Res., 66 (1994) 230–235.
  24. C.R. Tsai, J.L. Garcia, B.K. Patel, J.L. Cayol, L. Baresi, R.A. Mah, Haloanaerobium alcaliphilum sp. nov., an anaerobic moderate halophile from the sediments of Great Salt Lake, Utah, Int. J. Syst. Evol. Microbiol., 45 (1995) 301–307.
  25. A. Poli, E. Esposito, P. Orlando, L. Lama, A. Giordano, F. de Appolonia, B. Nicolaus, A. Gambacorta, Halomonas alkaliantarctica sp. nov., isolated from saline lake Cape Russell in Antarctica, an alkalophilic moderately halophilic, exopolysaccharide-producing bacterium, Syst. Appl. Microbiol., 30 (2007) 31–38.
  26. S. Dassarma, P. Dassarma, In: eLS, Halophiles, John Wiley & Sons Ltd., Chichester, 2012, doi: 10.1002/9780470015902. a0000394.pub3.
  27. A. Roohi, I. Ahmed, M. Iqbal, M. Jamil, Preliminary isolation and characterization of halotolerant and halophilic bacteria from salt mines of Karak, Pakistan, Pak. J. Bot., 44 (2012) 365–370.
  28. M.R. Mormile, M.F. Romine, M.T. Garcia, A. Ventosa, T.J. Bailey, B.M. Peyton, Halomonas campisalis sp. nov., a denitrifying, moderately haloalkaliphilic bacterium, Syst. Appl. Microbiol., 22 (1999) 551–558.
  29. M.A. Amoozegar, F. Malekzadeh, K.A. Malik, P. Schumann, C. Spröer, Halobacillus karajensis sp. nov., a novel moderate halophile, Int. J. Syst. Evol. Microbiol., 153 (2003) 1059–1063.
  30. M.A. Amoozegar, A.Z. Fatemi, H.R. Karbalaei-Heidari, M.R. Razavi, Production of an extracellular alkaline metalloprotease from a newly isolated, moderately halophile, Salinivibrio sp. strain AF-2004, J. Microbiol. Res., 162 (2007) 369–377.
  31. G.A. Somerville, R.A. Proctor, Cultivation conditions and the diffusion of oxygen into culture media: the rationale for the flask-to-medium ratio in microbiology, BMC Microbiol., 13 (2013) 9.
  32. R.H. Vreeland, C.D. Litchfield, E.L. Martin, E. Elliot, Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria, Int. J. Syst. Evol. Microbiol., 30 (1980) 485–495.
  33. A. Uygur, F. Kargı, Salt inhibition on biological nutrient removal from saline wastewater in a sequencing batch reactor, Enzyme Microb. Technol., 34 (2004) 313–318.
  34. H. Mu, Y. Chen, N. Xiao, Effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2 and ZnO) on waste activated sludge anaerobic digestion, Bioresour. Technol., 102 (2011) 10305–10311.
  35. R. Sinha, R. Karan, A. Sinha, S.K. Khare, Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells, Bioresour. Technol., 102 (2011) 1516–1520.
  36. R. Sinha, S.K. Khare, Differential interactions of halophilic and non-halophilic proteases with nanoparticles, Sustainable Chem. Processes, 2 (2014) 1–8.
  37. M.A. Maurer-Jones, I.L. Gunsolus, C.J. Murphy, C.L. Haynes, Toxicity of engineered nanoparticles in the environment, Anal. Chem., 85 (2013) 3036–3049.
  38. M. Megharaj, S. Avudainayagam, R. Naidu, Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste, Curr. Microbiol., 47 (2003) 51–54.
  39. G. Dönmez, Z. Aksu, Removal of chromium(VI) from saline wastewaters by Dunaliella species, Process Biochem., 38 (2002) 751–762.
  40. G. Dönmez, N. Koçberber, Bioaccumulation of hexavalent chromium by enriched microbial cultures obtained from molasses and NaCl containing media, Process Biochem., 40 (2005) 2493–2498.
  41. Z. Sheng, Y. Liu, Effects of silver nanoparticles on wastewater biofilms, Water Res., 45 (2011) 6039–6050.
  42. B.K. Singh, A. Walker, Microbial degradation of organophosphorus compounds, FEMS Microbiol. Rev., 30 (2006) 428–471.
  43. S. le Borgne, D. Paniagua, R. Vazquez-Duhalt, Biodegradation of organic pollutants by halophilic bacteria and archaea, J. Mol. Microbiol. Biotechnol., 15 (2008) 74–92.