References

  1. M. Elloumi, La gouvernance des eaux souterraines en Tunisie, “Groundwater governance in the Arab World –Taking Stok and addressing the challenges”, IMWI publication, 2016.
  2. ITES, Etude stratégique: Système hydraulique de la Tunisie à l’horizon 2030, 2014, p. 222.
  3. A. Hamdane, La gestion des ressources en eau souterraines (nappes et aquifères) comme biens communs: Cas de la Tunisie, Synthèse régionale sur l’approche économique de la gestion de la demande en eau en Méditerranée, 2014.
  4. M.F. Ben Hammouda, P. Carreira, J.M. Marques, H. Egenkamps, Geochimical and isotopic investigation to study the origin of mineralization of the coastal aquifer of Sousse, Tunisia, Procedia Earth Planet Sci., 7 (2013) 61–64.
  5. NT.09.14 Normes Tunisiennes – Eaux destinées à la consommation humaine à l’exclusion des eaux conditionnées, 2013.
  6. V.G. Gude, Desalination of deep groundwater aquifers for freshwater supplies – challenges and strategies, Groundwater Sustain. Dev., 6 (2018) 87–92.
  7. S.S. Shenvi, A.M. Isloor, A.F. Ismail, A Review on RO membrane technology: developments and challenges, Desalination, 368 (2015) 10–26.
  8. A.J. Karabelas, D.C. Sioutopoulos, New insights into organic gel fouling of reverse osmosis desalination membranes, Desalination, 368 (2015) 114–126.
  9. Q. She, R. Wang, A.G. Fane, C.Y. Tang, Membrane fouling in osmotically driven membrane processes: a review, J. Membr. Sci., 499 (2016) 201–233.
  10. M. Badruzzaman, A. Subramani, J. DeCarolis, W. Pearce, J.G. Jacangelo, Impacts of silica on the sustainable productivity of reverse osmosis membranes treating low salinity brackish groundwater, Desalination, 279 (2011) 210–218.
  11. A.W. Mohammad, Y.H. Teow, W.L. Ang, Y.T. Chung, D.L. Oatley-Radcliffe, N. Hilal, Nanofiltration membranes review: Recent advances and future prospects, Desalination, 356 (2015) 226–254.
  12. M. Talaeipour, J. Nouri, A.H. Hassani, A.H. Mahvi, An investigation of desalination by nanofiltration, reverse osmosis and integrated (hybrid NF/RO) membranes employed in brackish water treatment, J. Environ. Health Sci. Eng., 15 N° 1 (2017) 15–18.
  13. N. Yousefi, A. Fatehizedeh, K. Ghadiri, N. Mirzaei, S.D. Ashrafi, A.H. Mahvi, Application of nanofilter in removal of phosphate, fluoride and nitrite from groundwater, Desal. Wat. Treat., 57 (2016) 11782–11788.
  14. A.H. Mahvi, M. Malakootian, A. Fatehizadeh, M.H. Ehrampoush, Nitrate removal from aqueous solutions by nanofiltration, Desal. Wat. Treat., 29 (2011) 326–330.
  15. B. Van der Bruggen, Nanofiltration in Encyclopedia of Membrane Science and Technology, E.M.V. Hoek, V.V. Tarabara, Eds., John Wiley & Sons, Inc, 2013.
  16. https://dowac.custhelp.com/app/answers/detail/a_id/4925/~/ filmtec-membranes---nanofiltration---mwco, (17 Juin 2019)
  17. http://synderfiltration.com/nanofiltration/membranes/, (17 Juin 2019)
  18. https://trisep-membranes.squarespace.com/s/TS40.pdf, (17 Juin 2019)
  19. K. Kŏsutić, D. Dolar, B. Kunst, On experimental parameters characterizing the reverse osmosis and nanofiltration membranes’ active layer, J. Membr. Sci., 282 (2006) 109–114.
  20. https://trisep-membranes.squarespace.com/s/TS80.pdf, (17 Juin 2019)
  21. http://membranes.com/solutions/products/nf/esna-2/, (17 Juin 2019)
  22. Y. Song, T. Li, J. Zhou, Z. Li, C. Gao, Analysis of nanofiltration membrane performance during softening process of simulated brackish groundwater, Desalination, 399 (2016) 159–164.
  23. X. Su, Y. Song, T. Li, G Congjie, Effect of feed water characteristics on nanofiltration separating performance for brackish water treatment in the Huanghuai region of China, J. Water Process Eng., 19 (2017) 147–155.
  24. Y. Song, J. Xu, Y. Xu, X. Gao, C. Gao, Performance of UF– NF integrated membrane process for seawater softening, Desalination, 276 (2011) 109–116.
  25. L.D. Nguyen, S. Gassara, M.Q. Bui, F. Zaviska, P. Sistat, A. Deratani, Desalination and removal of pesticides from surface water in Mekong Delta by coupling electrodialysis and nanofiltration, Environ. Sci. Pollut. Res. Int., (2018). doi. org/10.1007/s11356-018-3918-6.
  26. H. Chmiel, X. Lefebvre, V. Mavrov, M. Noronha, J. Palmeri, Computer Simulation of Nanofiltration, Membranes and Processes, In: M. Rieth, W. Schommers, Eds., Handbook of Theoretical and Computational Nanotechnology, American Scientific Publishers, Vol. 5, 2006, pp. 93–214.
  27. A. Altaee, A Computational Model to Estimate the Performance of 8 inches RO Membranes in Pressure Vessel, J. Membr. Sep. Technol., 1 (2012) 60–71.
  28. X.L. Wang, T. Tsuru, M. Togoh, S. Nakao, S. Kimura, Transport of organic electrolytes with electrostatic and steric-hindrance effects through nanofiltration membranes, J. Chem. Eng. Jpn., 28 (1995) 372–380.
  29. W.R. Bowen, H. Mukthar, Characterization and prediction of separation performance of nanofiltration membranes, J. Membr. Sci., 112 (1996) 263–274.
  30. X. Lefebvre, J. Palmeri, P. David, Nanofiltration theory: an analytic approach for single salts, J. Phys. Chem. B, 108 (2004) 16811–16824.
  31. J. Palmeri, J. Sandeaux, R. Sandeaux,, P. David, C. Guizard, P. Amblard, J.F. Diaz, B. Lamaze, Modeling of multi-electrolyte transport in charged ceramic and organic nanofilters using the computer simulation program NanoFlux, Desalination, 147 (2002) 231–236.
  32. X. Lefebvre, J. Palmeri, J. Sandeaux, R. Sandeaux, P. David, B. Maleyre, C. Guizard, P. Amblard, J.F. Diaz, B. Lamaze, Nanofiltration modeling: a comparative study of the salt filtration performance of a charged ceramic membrane and an organic nanofilter using the computer simulation program nanoflux, Sep. Purif. Technol., 32 (2003) 117–126.
  33. J. Palmeri, N. Ben Amar, H. Saidani, A. Deratani, Process modeling of brackish and seawater nanofiltration, Desal. Wat. Treat., 9 (2009) 26–271.
  34. X. Lefebvre, J. Palmeri, Nanofiltration Theory: Good co-ion exclusion approximation for single salts, J. Phys. Chem. B, 109 (2005) 5525–5540.
  35. H. Bukšek, T. Luxbacher, I. Petrinić, Zeta potential determination of polymeric materials using two differently designed measuring cells of an electrokinetic analyzer, Acta Chim. Slov., 57 (2010) 700–706.
  36. S. Gassara, W. Chinpa, D. Quemener, R. Ben Amar, A. Deratani, Pore size tailoring of poly(ether imide) membrane from UF to NF range by chemical post-treatment using aminated oligomers, J. Membr. Sci., 436 (2013) 36–46.
  37. M. Pontié, H. Dach, J. Leparc, M. Hafsi, A. Lhassani, Novel approach combining physico-chemical characterizations and mass transfer modelling of nanofiltration and low pressure reverse osmosis membranes for brackish water desalination intensification, Desalination, 221 (2008) 174–191.
  38. A. Azaïs, J. Mendret, S. Gassara, E. Petit, A. Deratani, S. Brosillon, Nanofiltration for wastewater reuse: counteractive effects of fouling and matrice on the rejection of pharmaceutical active compounds, Sep. Purif. Technol., 133 (2014) 313–327.
  39. J. Luo, Y. Wan, Effects of pH and salt on nanofiltration—a critical review, J. Membr. Sci., 438 (2013) 18–28.
  40. L. Thomas, C. Bryan, T. Cath, Does the surface zeta potential approach zero at high salinity?, Advances in Civil, Environmental, and Materials Research (ACEM14), Busan, Korea, 2014, pp. 24–28. http://www.i-asem.org/publication_conf/acem14/3. MWT/T3C.3.MW251_386F.pdf
  41. W.B.S. de Lint, N.E. Benes, J. Lyklema, H.J.M. Bouwmeester, A.J. van der Linde, M. Wessling, Ion adsorption parameters determined from zeta potential and titration data for a y-alumina nanofiltration membrane, Langmuir, 19 (2003) 5861–5868.
  42. P. Ortiz-Albo, R. Ibañez, A. Urtiaga, I. Ortiz, Phenomenological prediction of desalination brines nanofiltration through the indirect determination of zeta potential, Sep. Purif. Technol., 210 (2019) 746–753.