References
- J. Liu, G. Liu, W. Liu, Preparation of water-soluble β-cyclodextrin/poly(acrylic acid)/graphene oxide nanocomposites as new
adsorbents to remove cationic dyes from aqueous solutions,
Chem. Eng. J., 257 (2014) 299–308.
- M. Fan, J. Hu, R. Cao, W. Ruan, X. Wei, A review on experimental
design for pollutants removal in water treatment with the aid of
artificial intelligence, Chemosphere, 200 (2018) 330–339.
- L. Hu, Fabrication of hyperbranched polyamine functionalized
graphene for high-efficiency removal of Pb(II) and methylene
blue, Chem. Eng. J., 287 (2016) 545–556.
- F. Wang, L. Zhang, Y. Wang, X. Liu, S. Rohani, J. Lu, Fe3O4@SiO2@
CS-TETA functionalized graphene oxide for the adsorption
of methylene blue (MB) and Cu(II), Appl. Surf. Sci., 23 (2017)
420–431.
- V.M. Esquerdo, C.T. Jr, G.L. Dotto, L.A. Pinto, Chitosan scaffold
as an alternative adsorbent for the removal of hazardous food
dyes from aqueous solutions, J. Colloid Interface Sci., 424 (2014)
7–15.
- Z. Geng, Highly efficient dye adsorption and removal: a
functional hybrid of reduced graphene oxide–Fe3O4 nanoparticles
as an easily regenerative adsorbent, J. Mater. Chem.,
22 (2012) 3527–3535.
- Y. Huang, J. Tang, L. Gai, Y. Gong, H. Guan, R. He, H. Lyu,
Different approaches for preparing a novel thiol-functionalized
graphene oxide/Fe-Mn and its application for aqueous
methylmercury removal, Chem. Eng. J., 319 (2017) 229–239.
- M. Liu, T. Wen, X. Wu, C. Chen, J. Hu, J. Li, X. Wang, Synthesis of
porous Fe3O4 hollow microspheres/graphene oxide composite
for Cr(VI) removal, Dalton Trans., 42 (2013) 14710.
- R.X. Liu, R.J. Tan, B. Li, Y.H. Song, B. Zeng, Z.S. Li, Overview of
POPs and heavy metals in Liao River Basin, Environ. Earth Sci.,
73 (2015) 5007–5017.
- A. Demir, A. Gunay, E. Debik, Ammonium removal from
aqueous solution by ion-exchange using packed bed natural
zeolite, Water SA, 28 (2002) 329–335.
- Y. Masue, R.H. Loeppert, T.A. Kramer, Arsenate and arsenite
adsorption and desorption behavior on coprecipitated aluminum:
iron hydroxides, Environ. Sci. Technol., 41 (2007) 837–42.
- R.C. Cheng, S. Liang, H.C. Wang, M.D. Beuhler, Enhanced
coagulation for arsenic removal, J. Am. Water Works Assoc., 86
(1994) 79–90.
- Y. Yoon, Y. Hwang, M. Ji, B. Jeon, J. Kang, Ozone/membrane
hybrid process for arsenic removal in iron-containing water,
Desal. Wat. Treat., 31 (2011) 138–143.
- P. Brandhuber, G. Amy, Arsenic removal by a charged ultrafiltration
membrane-influences of membrane operating conditions
and water quality on arsenic rejection, Desalination, 140 (2001)
1–14.
- A.I. Alonso, A.M. Urtiaga, S. Zamacona, A. Irabien, I. Ortiz,
Kinetic modelling of cadmium removal from phosphoric acid
by non-dispersive solvent extraction, J. Membr. Sci., 130 (1997)
193–203.
- H. Polat, D. Erdogan, Heavy metal removal from waste waters
by ion flotation, J. Hazard. Mater., 148 (2007) 267–273.
- J. Ma, W. Liu, Effectiveness and mechanism of potassium ferrate
(VI) preoxidation for algae removal by coagulation, Water Res.,
36 (2002) 871–878.
- P. Gao, X. Chen, F. Shen, G. Chen, Removal of chromium(VI) from
wastewater by combined electrocoagulation–electroflotation
without a filter, Sep. Purif. Technol., 43 (2005) 117–123.
- C.T. Wang, W.L. Chou, Y.M. Kuo, Removal of COD from
laundry wastewater by electrocoagulation/electroflotation,
J. Hazard. Mater., 164 (2009) 81–86.
- A.L. Dolo, S. Goel, Effect of electrode combinations, pH and
current density on arsenic removal from drinking water using
electrocoagulation, J. Inst. Eng. Environ. Eng. Div., 25 (2010)
21–25.
- D.Q. Tran, H.T. Pham, H.Q. Do, Efficient removal of
uranium from aqueous solution by reduced graphene oxide–Zn0.5Ni0.5Fe2O4 ferrite–polyaniline nanocomposite, J. Electron.
Mater., 46 (2017) 3273–3278.
- W. Qi, Y. Zhao, X. Zheng, M. Ji, Z. Zhang, Adsorption behavior
and mechanism of Cr(VI) using Sakura waste from aqueous
solution, Appl. Surf. Sci., 360 (2016) 470–476.
- Y. Chen, H. Xu, S. Wang, L. Kang, Removal of Cr(VI) from
water using polypyrrole/attapulgite core-shell nanocomposites:
equilibrium, thermodynamics and kinetics, RSC Adv., 4 (2014)
17805–17811.
- Y. Zhao, D. Zhao, C. Chen, X. Wang, Enhanced photo-reduction
and removal of Cr(VI) on reduced graphene oxide decorated with
TiO2 nanoparticles, J. Colloid Interface Sci., 405 (2013) 211–217.
- N. Kannan, M.M. Sundaram, Kinetics and mechanism of
removal of methylene blue by adsorption on various carbons-a
comparative study, Dyes Pigm., 51 (2001) 25–40.
- M. Doğan, M. Alkan, A. Türkyilmaz, Y. Ozdemir, Kinetics and
mechanism of removal of methylene blue by adsorption onto
perlite, J. Hazard. Mater., 109 (2004) 141–148.
- J. Aguado, J.M. Arsuaga, A. Arencibia, M. Lindo, V. Gascón,
Aqueous heavy metals removal by adsorption on aminefunctionalized
mesoporous silica, J. Hazard. Mater., 163 (2009)
213–221.
- R.L. Johnson, Field-scale transport and transformation of
carboxymethylcellulose-stabilized nano zero-valent iron,
Environ. Sci. Technol., 47 (2013) 1573–1580.
- J. Li, C. Chen, K. Zhu, X. Wang, Nanoscale zero-valent iron
particles modified on reduced graphene oxides using a plasma
technique for Cd(II) removal, J. Taiwan Inst. Chem. Eng., 59 (2016)
389–394.
- M.A. Gondal, A. Hameed, Z.H. Yamani, A. Suwaiyan, Production
of hydrogen and oxygen by water splitting using laser
induced photo-catalysis over Fe2O3, Appl. Catal. A, 268 (2004)
159–167.
- S. Guo, G. Zhang, Y. Guo, J.C. Yu, Graphene oxide–Fe2O3
hybrid material as highly efficient heterogeneous catalyst
for degradation of organic contaminants, Carbon, 60 (2013)
437–444.
- X.S. Lv, Y. Qiu, Z.Y. Wang, G.M. Jiang, Y.T. Chen, X.H. Xu,
R.H. Hurt, Aerosol synthesis of phase-controlled iron-graphene
nanohybrids through FeOOH nanorod intermediates, Environ.
Sci: Nano, 3 (2016) 1215–1221.
- J. Huang, Q. Chang, Y. Ding, X. Han, H. Tang, Catalytic
oxidative removal of 2,4-dichlorophenol by simultaneous use of
horseradish peroxidase and graphene oxide/Fe3O4 as catalyst,
Chem. Eng. J., 254 (2014) 434–442.
- Q. Chang, J. Huang, Y. Ding, H. Tang, Catalytic oxidation of
phenol and 2,4-dichlorophenol by using horseradish peroxidase
immobilized on graphene oxide/Fe3O4, Molecules, 21 (2016)
1044–1050.
- J. Cao, Q. Liu, J. Du, L. Yang, M. Wei, M. Gao, J. Yang, Facile onestep
hydrothermal method to fabricate Fe3O4 quantum dots–graphene nanocomposites for extraction of dye from aqueous
solution, J. Mater. Sci. Mater. Electron., 28 (2016) 2267–2271.
- J.W. Su, Y.X. Zhang, S.C. Xu, S. Wang, H.L. Ding, S.S. Pan,
G.Z. Wang, G.H. Li, H.J. Zhao, Highly efficient and recyclable
triple-shelled Ag@Fe3O4@SiO2@TiO2 photocatalysts for degradation
of organic pollutants and reduction of hexavalent
chromium ions, Nanoscale, 6 (2014) 5181–5192.
- H. Xu, Synthesis and super capacitance of goethite/reduced
graphene oxide for supercapacitors, Mater. Chem. Phys.,
141 (2013) 310–317.
- Q. Zhou, Y. Lin, J. Shu, K. Zhang, Z. Yu, D. Tang, Reduced
graphene oxide-functionalized FeOOH for signal-on photoelectrochemical
sensing of prostate-specific antigen with
bioresponsive controlled release system, Biosens. Bioelectron.,
98 (2017) 15–21.
- G. Huang, C. Zhang, Y. Long, J. Wynn, Y. Liu, W. Wang, J. Gao,
Low temperature preparation of α-FeOOH/reduced graphene
oxide and its catalytic activity for the photodegradation of an
organic dye, Nanotechnology, 24 (2013) 395601–395601.
- P. Laokul, V. Amornkitbamrung, S. Seraphin, S. Maensiri,
Characterization and magnetic properties of nanocrystalline
CuFeO, NiFeO, ZnFeO powders prepared by the Aloe vera
extract solution, Curr. Appl. Phys., 11 (2011) 101–108.
- F. Deng, X. Lu, X. Pei, X. Luo, S. Luo, D.D. Dionysiou, Fabrication
of ternary reduced graphene oxide/SnS2/ZnFe2O4 composite for
high visible-light photocatalytic activity and stability, J. Hazard.
Mater., 332 (2017) 149–161.
- B. Zhang, J. Zhang, F. Chen, Preparation and characterization
of magnetic TiO2/ZnFe2O4 photocatalysts by a sol–gel method,
Res. Chem. Intermed., 34 (2008) 375–380.
- S. Sindhu, A. Narayanasamy, On the magnetic properties of
ultra-fine zinc ferrites, J. Magn. Magn. Mater., 189 (1998) 83–88.
- B.K. Kang, Efficient removal of arsenic by strategically
designed and layer-by-layer assembled PS@+rGO@GO@Fe3O4
composites, J. Environ. Manage., 201 (2017) 286–293.
- Z.J. Li, L. Wang, L.Y. Yuan, C.L. Xiao, L. Mei, L.R. Zheng,
J. Zhang, J.H. Yang, Y.L. Zhao, Z.T. Zhu, Z.F. Chai, W.Q. Shi,
Efficient removal of uranium from aqueous solution by zerovalent
iron nanoparticle and its graphene composite, J. Hazard.
Mater., 290 (2015) 26–33.
- W. Feng, P. Long, Y. Feng, Y. Li, Two-dimensional fluorinated
graphene: synthesis, structures, properties and applications,
Adv. Sci., 3 (2016) 1–22.
- H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-graphene composite as
a high performance photocatalyst, ACS Nano, 4 (2010) 380–386.
- S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin,
L.A. Ponomarenko, D. Jiang, A.K. Geim, Strong suppression
of weak localization in graphene, Phys. Rev. Lett., 97 (2006)
016801–016804.
- E.H. Hwang, S. Adam, S.D. Sarma, Transport in chemically
doped graphene in the presence of adsorbed molecules, Phys.
Rev. B, 76 (2007) 195421–195429.
- M. Ishigami, J.H. Chen, W.G. Cullen, M.S. Fuhrer, E.D. Williams,
Atomic Structure of Graphene on SiO2, Nano Lett., 7 (2007)
1643–1648.
- F. Schedin, K.S. Novoselov, S.V. Morozov, D. Jiang, E.H. Hill,
P. Blake, A.K. Geim, Detection of individual gas molecules by
graphene sensors, Nat. Mater., 6 (2006) 652–655.
- T.O. Wehling, A.V. Balatsky, M.I. Katsnelson, A.I. Lichtenstein,
K. Scharnberg, R. Wiesendanger, Local electronic signatures
of impurity states in graphene, Phys. Rev. B, 75 (2007)
125421–125425.
- Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada,
H. Fukuyama, Scanning tunneling microscopy and spectroscopy
of the electronic local density of states of graphite surfaces near
monoatomic step edges, Phys. Rev. B, 73 (2006) 085421–0854218.
- M. Liang, B. Luo, L. Zhi, Application of graphene and graphenebased
materials in clean energy-related devices, Int. J. Energy
Res., 33 (2010) 1161–1170.
- S. Wang, H. Sun, H.M. Ang, M.O. Tadé, Adsorptive remediation
of environmental pollutants using novel graphene-based
nanomaterials, Chem. Eng. J., 226 (2013) 336–347.
- O.C. Compton, S.B.T. Nguyen, Graphene oxide, highly reduced
graphene oxide, and graphene: versatile building blocks for
carbon-based materials, Small, 6 (2010) 711–720.
- A. Kumar, L. Rout, L.S.K. Achary, S.K. Mohanty, P. Dash,
A combustion synthesis route for magnetically separable
graphene oxide–CuFe2O4–ZnO nanocomposites with enhanced
solar light-mediated photocatalytic activity, New J. Chem.,
41 (2017) 2–19.
- L. Zhuo, Y. Wu, L. Wang, J. Ming, Y. Yu, X. Zhang, F. Zhao,
CO2–expanded ethanol chemical synthesis of a Fe3O4@graphene
composite and its good electrochemical properties as anode
material for Li-ion batteries, J. Mater. Chem., 1 (2013) 3954–3960.
- S. Hashemian, M. Rahimi, A.A. Kerdegari, CuFeO@graphene
nanocomposite as a sorbent for removal of alizarine yellow azo
dye from aqueous solutions, Desal. Wat. Treat., 57 (2015) 1–12.
- J. Manokaran, Equilibrium, kinetic and thermodynamic studies
for the removal of Zn(II) and Ni(II) ions using magnetically
recoverable graphene/FeO composite, Desal. Wat. Treat.,
56 (2015) 2485–2501.
- S. Vadahanambi, S.H. Lee, W.J. Kim, I.K. Oh, Arsenic removal
from contaminated water using three-dimensional graphenecarbon
nanotube-iron oxide nanostructures, Environ. Sci.
Technol., 47 (2013) 10510–10517.
- C.M. Babu, R. Vinodh, B. Sundaravel, A. Abidov, M.P. Mei,
S.C. Wang, H.T. Jang, Characterization of reduced graphene
oxide supported mesoporous Fe2O3/TiO2 nanoparticles and
adsorption of As(III) and As(V) from potable water, J. Taiwan
Inst. Chem. Eng., 62 (2016) 199–208.
- D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry
of graphene oxide, Chem. Soc. Rev., 39 (2009) 228–240.
- W. Gao, M. Majumder, L.B. Alemany, T.N. Narayanan,
M.A. Ibarra, B.K. Pradhan, P.M. Ajayan, Engineered graphite
oxide materials for application in water purification, ACS
Appl. Mater. Interface, 3 (2011) 1821–1830.
- R. Mukherjee, P. Bhunia, S. De, Impact of graphene oxide on
removal of heavy metals using mixed matrix membrane, Chem.
Eng. J., 292 (2016) 284–297.
- Y. Bian, Z.Y. Bian, J.X. Zhang, A.Z. Ding, S.L. Liu, H. Wang,
Effect of the oxygen-containing functional group of graphene
oxide on the aqueous cadmium ions removal, Appl. Surf. Sci.,
329 (2015) 269–275.
- B. Huang, Effect of Cu(II) ions on the enhancement of
tetracycline adsorption by Fe3O4@SiO2-chitosan/graphene
oxide nanocomposite, Carbohydr. Polym., 157 (2017) 576–585.
- S. Yang, C. Chen, Y. Chen, J. Li, D. Wang, X. Wang, W. Hu,
Competitive adsorption of Pb(II), Ni(II), and Sr(II) ions on
graphene oxides: a combined experimental and theoretical
study, Chempluschem, 80 (2015) 480–484.
- J. Xu, L. Wang, Y. Zhu, Decontamination of bisphenol a from
aqueous solution by graphene adsorption, Langmuir, 28 (2012)
8418–8423.
- M. Machida, T. Mochimaru, H. Tatsumoto, Lead(II) adsorption
onto the graphene layer of carbonaceous materials in aqueous
solution, Carbon, 44 (2006) 2681–2688.
- Q. Chang, G. Jiang, H. Tang, N. Li, J. Huang, L. Wu, Enzymatic
removal of chlorophenols using horseradish peroxidase
immobilized on superparamagnetic Fe3O4/graphene oxide nanocomposite,
Chin. J. Catal., 36 (2015) 961–968.
- G. Jiang, TiO2 nanoparticles assembled on graphene oxide
nanosheets with high photocatalytic activity for removal of
pollutants, Carbon, 49 (2011) 2693–2701.
- X. Yang, C. Chen, J. Li, G. Zhao, X. Ren, X. Wang, Graphene
oxide-iron oxide and reduced graphene oxide-iron oxide hybrid
materials for the removal of organic and inorganic pollutants,
RSC Adv., 2 (2012) 8821–8826.
- S. Prakash, S. Mishra, Graphene-Fe3O4-TiO2 ternary composite:
an efficient visible light catalyst for the removal of organic
pollutants, Neuropsychologia, 64 (2014) 124–133.
- L.M. Viculis, J.J. Mack, O.M. Mayer, H.T. Hahn, R. Kaner,
Intercalation and exfoliation routes to graphite nanoplatelets,
J. Mater. Chem., 15 (2005) 974–978.
- W. Choi, I. Lahiri, R. Seelaboyina, Y.S. Kang, Synthesis of
graphene and its applications: a review, Crit. Rev. Solid State
Mater. Sci., 35 (2010) 52–71.
- L.M. Viculis, J.J. Mack, R.B. Kaner, A chemical route to carbon
nanoscrolls, Science, 299 (2003) 1361–1369.
- P.R. Somani, S.P. Somani, M. Umeno, Planer nano-graphenes
from camphor by CVD, Chem. Phys. Lett., 430 (2006) 56–59.
- A.N. Obraztsov, E.A. Obraztsova, A.V. Tyurnina, A.A. Zolotukhin,
Chemical vapor deposition of thin graphite films of
nanometer thickness, Carbon, 45 (2007) 2017–2021.
- W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, G. Chen, Preparation
of graphene by exfoliation of graphite using wet ball milling,
J. Mater. Chem., 20 (2010) 5817–5819.
- P.T.L. Huong, T.H. Le, V.N. Phan, T.Q. Huy, H.N. Man, V.D. Lam,
A.T. Le, Application of graphene oxide-MnFe2O4 magnetic
nanohybrids as magnetically separable adsorbent for highly
efficient removal of arsenic from water, J. Electron. Mater., 45
(2016) 2372–2380.
- C. Prasad, P.K. Murthy, R.H. Krishna, R.S. Rao, V. Suneetha,
P. Venkateswarlu, Bio-inspired green synthesis of RGO/Fe3O4
magnetic nanoparticles using Murrayakoenigii leaves extract
and its application for removal of Pb(II) from aqueous solution,
J. Environ. Chem. Eng., 5 (2017) 1–31.
- Z. Wan, J. Wang, Degradation of sulfamethazine using Fe3O4-Mn3O4/reduced graphene oxide hybrid as Fenton-like catalyst,
J. Hazard. Mater., 324 (2016) 653–664.
- A.K. Rai, S. Kim, J. Gim, M.H. Alfaruqi, V. Mathew, J. Kim,
Electrochemical lithium storage of a ZnFe2O4/graphene
nanocomposite as an anode material for rechargeable lithium
ion batteries, RSC Adv., 4 (2014) 47087–47095.
- J. Zhu, M. Xu, X. Meng, K. Shang, H. Fan, S. Ai, Electroenzymatic
degradation of carbofuran with the graphene oxide–Fe3O4–hemoglobin composite in an electrochemical reactor,
Process Biochem., 47 (2012) 2480–2486.
- Y. Guo, Enhanced photocatalytic reduction activity of
uranium(VI) from aqueous solution using the Fe2O3-graphene
oxide nanocomposite, Dalton Trans., 2 (2017) 1–3.
- S. Chella, Solvothermal synthesis of MnFe2O4-graphene
composite—investigation of its adsorption and antimicrobial
properties, Appl. Surf. Sci., 327 (2015) 27–36.
- Y. Lin, Ternary Graphene–TiO2–Fe3O4 nanocomposite as a
recollectable photocatalyst with enhanced durability, Eur. J.
Inorg. Chem., 28 (2012) 4439–4444.
- D. Zhao, X. Gao, C. Wu, R. Xie, S. Feng, C. Chen, Facile
preparation of amino functionalized graphene oxide decorated
with Fe3O4 nanoparticles for the adsorption of Cr(VI), Appl.
Surf. Sci., 384 (2016) 1–9.
- Y. Fu, X. Wang, Magnetically separable ZnFe2O4–graphene
catalyst and its high photocatalytic performance under
visible light irradiation, Ind. Eng. Chem. Res., 50 (2011)
7210–7218.
- X.L. Wu, Y. Shi, S. Zhong, H. Lin, J.R. Chen, Facile synthesis
of Fe3O4-graphene@mesoporous SiO2 nanocomposites for efficient
removal of methylene blue, Appl. Surf. Sci., 378 (2016)
80–86.
- X.L. Wu, L. Wang, C.L. Chen, A.W. Xu, X.K. Wang, Waterdispersible
magnetite-graphene-LDH composites for efficient
arsenate removal, J. Mater. Chem., 21 (2011) 17353–17359.
- L. Li, J. Hu, X. Shi, M. Fan, J. Luo, X. Wei, Nanoscale zerovalent
metals: a review of synthesis, characterization, and
applications to environmental remediation, Environ. Sci.
Pollut. Res., 23 (2016) 17880–17885.
- M.P. Deosarkar, S.M. Pawar, S.H. Sonawane, B.A. Bhanvase,
Process intensification of uniform loading of SnO2
nanoparticles on graphene oxide nanosheets using a novel
ultrasound assisted in situ chemical precipitation method,
Chem. Eng. Processing:Process Intensif., 70 (2013) 48–54.
- M.P. Deosarkar, S.M. Pawar, B.A. Bhanvase, In situ sonochemical
synthesis of Fe3O4–graphene nanocomposite for
lithium rechargeable batteries, Chem. Eng. Processing:
Process Intensif., 83 (2014) 49–55.
- N. Rahman, U. Haseen, Equilibrium modeling, kinetic, and
thermodynamic studies on adsorption of Pb(II) by a hybrid
inorganic–organic material: polyacrylamide zirconium(IV),
iodate. Ind. Eng. Chem. Res., 53 (2014) 8198–8207.
- S. Chandra, S. Bag, R. Bhar, P. Pramanik, Sonochemical
synthesis and application of rhodium–graphene nanocomposite,
J. Nanopart.
Res., 13 (2010) 2769–2777.
- X.F. Zhang, L.L. Du, H. Wang, X.L. Dong, X.X. Zhang,
C.C. Ma, H.C. Ma, Highly ordered mesoporous BiVO4:
controllable ordering degree and super photocatalytic ability
under visible light, Microporous Mesoporous Mater., 173
(2013) 175–180.
- D. Zhao, EDTA functionalized Fe3O4/graphene oxide for
efficient removal of U(VI) from aqueous solutions, J. Colloid
Interface Sci., 506 (2017) 300–308.
- G.W. Zhou, Facile spray drying route for the three-dimensional
graphene-encapsulated Fe2O3 nanoparticles for lithium ion
battery anodes, Ind. Eng. Chem. Res., 52 (2013) 1197–1204.
- X. Huang, Y. Niu, W. Hu, Fe/Fe3C nanoparticles loaded on
Fe/N-doped graphene as an efficient heterogeneous fenton
catalyst for degradation of organic pollutants, Colloids Surf.,
A, 518 (2017) 145–150.
- C. Lamberti, The use of synchrotron radiation techniques in the
characterization of strained semiconductor heterostructures
and thin films, Surf. Sci. Rep., 53 (2004) 186–197.
- S.D. Taylor, J. Liu, B.W. Arey, D.K. Schreiber, D.E. Perea,
K.M. Rosso, Resolving Fe(II) sorption and oxidative growth
on hematite (001) using atom probe tomography, J. Phys.
Chem. C, 122 (2018) 3903–3914.
- S.D. Taylor, M.C. Marcano, U. Becker, A first principles
investigation of electron transfer between Fe(II) and U(VI) on
insulating Al- vs. semiconducting Fe-oxide surfaces via the
proximity effect, Geochim. Cosmochim. Acta, 197 (2016) 1–38.
- S.E. Franklin, R.A. Stark, Application of secondary ion mass
spectrometry to study of graphite morphology in cast iron,
Metal Sci., 18 (1984) 187–199.
- F. Beate, V. Andreas, K. Ruben, Redox-controlled changes in
cadmium solubility and solid-phase speciation in a paddy
soil as affected by reducible sulfate and copper, Environ. Sci.
Technol., 47 (2013) 12775–12783.
- M. Fan, T. Li, J. Hu, R. Cao, Q. Wu, X. Wei, L. Li, X. Shi, W. Ruan,
Synthesis and characterization of reduced graphene oxidesupported
nanoscale zero-valent iron (nZVI/rGO) composites
used for Pb(II) removal, Materials, 9 (2016) 687–692.
- A. Boyde, E. Maconnachie, S.A. Reid, G. Delling, G.R. Mundy,
Scanning electron microscopy in bone pathology: review of
methods, potential and applications, Scan Electron Microsc.,
6 (1986) 1537–1554.
- P. Echlin, Low temperature scanning electron microscopy: a
review, J. Microsc., 112 (2011) 47–61.
- W.Q. Ruan, J.W. Hu, J.M. Qi, Y. Hou, R.S. Cao, X.H. Wei,
Removal of crystal violet by using reduced-grapheneoxide-
supported bimetallic Fe/Ni nanoparticles (rGO/Fe/Ni): application of artificial intelligence modeling for the
optimization process, Materials, 11 (2018) 865–871.
- T. Shojaeimehr, F. Rahimpour, M.A. Khadivi, M. Sadeghi,
A modeling study by response surface methodology (RSM)
and artificial neural network (ANN) on Cu2+ adsorption
optimization using light expended clay aggregate (LECA), J.
Ind. Eng. Chem., 20 (2014) 870–880.
- Z. Gao, D. Zhang, Y. Ge, Design optimization of a spatial six
degree-of-freedom parallel manipulator based on artificial
intelligence approaches, Robot. Cim. Int. Manuf., 26 (2010)
180–189.
- R. Cao, M. Fan, J. Hu, W. Ruan, X. Wu, X. Wei, Artificial
intelligence based optimization for the Se(IV) removal from
aqueous solution by reduced graphene oxide-supported
nanoscale zero-valent iron composites, Materials, 11 (2018)
428–435.
- E.S. Elmolla, M. Chaudhuri, M.M. Eltoukhy, The use of
artificial neural network (ANN) for modeling of COD removal
from antibiotic aqueous solution by the Fenton process, J.
Hazard. Mater., 179 (2010) 127–134.
- F. Heydari, M. Ghaedi, A. Ansari, A.M. Ghaedi, Random
forest model for removal of methylene blue and lead(II) ion
using activated carbon obtained from Tamarisk, Desal. Wat.
Treat., 57 (2015) 1–19.
- S. Eslamian, N. Lavaei, Modelling nitrate pollution of
groundwater using artificial neural network and genetic
algorithm in an arid zone, Int. J. Water, 5 (2009) 194–203.
- P. Kundu, A. Debsarkar, S. Mukherjee, Artificial neural
network modeling for biological removal of organic carbon
and nitrogen from slaughterhouse wastewater in a sequencing
Batch reactor, Adv. Artif. Neural Syst., 2013 (2013) 1–15.
- F.M. Santin, R.V.D. Silva, J.M.V. Grzybowski, Artificial
neural network ensembles and the design of performanceoriented
riparian buffer strips for the filtering of nitrogen in
agricultural catchments, Ecol. Eng., 94 (2016) 493–502.
- M. Huang, J. Wan, Y. Ma, Monitoring of anoxic/oxic process
for nitrogen and chemical oxygen demand removal using
fuzzy neural networks, Water Environ. Res., 81 (2009) 654–663.
- Y. Zhang, B. Pan, Modeling batch and column phosphate
removal by hydrated ferric oxide-based nanocomposite using
response surface methodology and artificial neural network,
Chem. Eng. J., 249 (2014) 111–120.
- S. Mandal, S.S. Mahapatra, M.K. Sahu, R.K. Patel, Artificial
neural network modeling of As(III) removal from water
by novel hybrid material, Process Saf. Environ., 93 (2015)
249–264.
- E.A. Dil, M. Ghaedi, A. Asfaram, S. Hajati, F. Mehrabi,
A. Goudarzi, Preparation of nanomaterials for the ultrasoundenhanced
removal of Pb2+ ions and malachite green dye:
Chemometric optimization and modeling, Ultrason. Sonochem.,
34 (2017) 677–691.
- T. Singh, V. Singh, S. Sinha, Prediction of cadmium removal
using an artificial neural network and a neuro-fuzzy
technique, Mine Water Environ., 25 (2006) 214–219.
- B.H. Lee, M. Scholz, Application of the self-organizing map
(SOM) to assess the heavy metal removal performance in
experimental constructed wetlands, Water Res., 40 (2006)
3367–3374.
- S. Chattoraj, N.K. Mondal, B. Das, P. Roy, B. Sadhukhan,
Carbaryl removal from aqueous solution by Lemna major
biomass using response surface methodology and artificial
neural network, J. Environ. Chem. Eng., 2 (2014) 1920–1928.
- M. Wang, S. Wang, An optical performance monitoring model
based on RBFANN trained with Eye-Diagram, Procedia Eng.,
29 (2012) 53–57.
- A.A. Ismaiel, M.K. Aroua, R. Yusoff, Palm shell activated
carbon impregnated with task-specific ionic-liquids as a novel
adsorbent for the removal of mercury from contaminated
water, Chem. Eng. J., 225 (2013) 306–314.
- H. Zheng, D.H. Liu, Y. Zheng, S.P. Liang, Z. Liu, Sorption
isotherm and kinetic modeling of aniline on Cr-bentonite,
J. Hazard. Mater., 167 (2009) 141–147.
- K.V. Kumar, K. Porkodi, F. Rocha, Comparison of various
error functions in predicting the optimum isotherm by
linear and non-linear regression analysis for the sorption of
basic red 9 by activated carbon, J. Hazard. Mater., 150 (2008)
158–165.
- Y.S. Ho, Selection of optimum sorption isotherm, Carbon,
42 (2004) 2115–2116.
- A. Kausar, H.N. Bhatti, G. Mackinnon, Equilibrium, kinetic
and thermodynamic studies on the removal of U(VI) by low
cost agricultural waste, Colloids Surf., B, 111 (2013) 124–133.
- X. Rong, F. Qiu, J. Qin, H. Zhao, J. Yan, D. Yang, A facile
hydrothermal synthesis, adsorption kinetics and isotherms to
Congo Red azo-dye from aqueous solution of NiO/graphene
nanosheets adsorbent, J. Ind. Eng. Chem., 26 (2015) 354–363.
- M. Alkan, Adsorption kinetics and thermodynamics of an
anionic dye onto sepiolite, Mesoporous Mater., 101 (2007)
388–396.
- T. Qi, C. Huang, S. Yan, X.J. Li, S.Y. Pan, Synthesis,
characterization and adsorption properties of magnetite/
reduced graphene oxide nanocomposites, Talanta, 144 (2015)
1116–1124.
- E.A. Dil, Application of artificial neural network and response
surface methodology for the removal of crystal violet by
zinc oxide nanorods loaded on activate carbon: kinetics
and equilibrium study, J. Taiwan Inst. Chem. Eng., 59 (2016)
210–220.
- V. Srivastava, Y.C. Sharma, M. Sillanpää, Application of
nano-magnesso ferrite (n-MgFe2O4) for the removal of Co2+
ions from synthetic wastewater: kinetic, equilibrium and
thermodynamic studies, Appl. Surf. Sci., 338 (2015) 42–54.
- A. Çelekli, H. Bozkurt, F. Geyik, Artificial neural network
and genetic algorithms for modeling of removal of an azo dye
on walnut husk, Desal. Wat. Treat., 57 (2015) 1–12.
- M.I. Inyang, A review of biochar as a low-cost adsorbent
for aqueous heavy metal removal, Crit. Rev. Environ. Sci.
Technol., 46 (2016) 1–56.
- Z. Liu, F.S. Zhang, Removal of lead from water using biochars
prepared from hydrothermal liquefaction of biomass, J.
Hazard. Mater., 167 (2009) 933–939.
- W.K. Park, Feasible water flow filter with facilely functionalized
Fe3O4-non-oxidative graphene/CNT composites for arsenic
removal, J. Environ. Chem. Eng., 4 (2016) 3246–3252.
- P.K. Boruah, B. Sharma, N. Hussain, M.R. Das, Magnetically
recoverable Fe3O4/graphene nanocomposite towards efficient
removal of triazine pesticides from aqueous solution: investigation
of the adsorption phenomenon and specific ion effect,
Chemosphere, 168 (2017) 1058–1062.
- M. Fan, T. Li, J. Hu, R. Cao, X. Wei, X. Shi, W. Ruan, Artificial
neural network modeling and genetic algorithm optimization
for cadmium removal from aqueous solutions by reduced
graphene oxide-supported nanoscale zero-valent iron (nZVI/
rGO) composites, Materials, 10 (2017) 544–551.
- W. Fan, W. Gao, C. Zhang, W.T. Weng, J. Pan, T. Liu,
Hybridization of graphene sheets and carbon-coated Fe3O4
nanoparticles as a synergistic adsorbent of organic dyes,
J. Mater. Chem., 22 (2012) 25108–25115.
- S. Kumar, R.R. Nair, P.B. Pillai, S.N. Gupta, M.A.R. Iyengar,
A.K. Sood, Graphene oxide-MnFe2O4 magnetic nanohybrids
for efficient removal of lead and arsenic from water, ACS
Appl. Mater. Interface, 6 (2014) 17426–17430.
- X. Shi, W. Ruan, J. Hu, M. Fan, R. Cao, X. Wei, Optimizing
the removal of rhodamine B in aqueous solutions by reduced
graphene oxide-supported nanoscale zerovalent iron (nZVI/rGO) using an artificial neural network-genetic algorithm
(ANN-GA), Nanomaterials, 7 (2017) 309–315.
- L. Chen, S. Feng, D. Zhao, S. Chen, F. Li, C. Chen, Efficient
sorption and reduction of U(VI) on zero-valent ironpolyaniline-
graphene aerogel ternary composite, J. Colloid
Interface Sci., 490 (2017) 197–203.
- L.Y. Zhu, X.Y. Zeng, X.P. Li, P. Yang, R.H. Yun, Hydrothermal
synthesis of magnetic Fe3O4/graphene composites with
good electromagnetic microwave absorbing performances,
J. Magn. Magn. Mater., 426 (2017) 114–120.
- S. Nethaji, A. Sivasamy, Graphene oxide coated with porous
iron oxide ribbons for 2, 4-Dichlorophenoxyacetic acid (2,4-D)
removal, Ecotoxicol, Environ. Saf., 138 (2017) 292–297.
- H.V. Tran, L.T. Bui, T.T. Dinh, D.H. Le, C.D. Huynh,
A.X. Trinh, Graphene oxide/Fe3O4/chitosan nanocomposite:
a recoverable and recyclable adsorbent for organic dyes
removal. Application to methylene blue, Mater. Res. Express.,
4 (2017) 701–711.
- A. Sinha, N.R. Jana, Graphene-based composite with γ-Fe2O3
nanoparticle for the high-performance removal of endocrinedisrupting
compounds from water, Chem. Asian J., 8 (2013)
786–791.
- X.L. Wu, P. Xiao, S. Zhong, K. Fang, H. Lin, J. Chen, Magnetic
ZnFe2O4@chitosan encapsulated in graphene oxide for
adsorptive removal of organic dye, RSC Adv., 7 (2017)
28145–28151.
- N.U. Yamaguchi, R. Bergamasco, S. Hamoudi, Magnetic
MnFe2O4–graphene hybrid composite for efficient removal of
glyphosate from water, Chem. Eng. J., 295 (2016) 391–402.
- Y.J. Yao, Magnetic recoverable MnFe2O4 and MnFe2O4-graphene
hybrid as heterogeneous catalysts of peroxymonosulfate
activation for efficient degradation of aqueous organic
pollutants, J. Hazard. Mater., 270 (2014) 61–70.
- A. Muthukrishnaraj, J. Manokaran, M. Vanitha, K.V. Thiruvengadaravi,
P. Baskaralingam, N. Balasubramanian, Equilibrium,
kinetic and thermodynamic studies for the removal of Zn(II)
and Ni(II) ions using magnetically recoverable graphene/Fe3O4 composite, Desal. Wat. Treat., 56 (2015) 2485–2501.
- T.Q. Dat, N.T. Ha, D.Q. Hung, Reduced graphene oxide-Cu0.5Ni0.5Fe2O4-polyaniline nanocomposite: preparation,
characterization
and microwave absorption properties, J.
Electron. Mater., 46 (2017) 3707–3713.
- J. Liu, W. Liu, Y. Wang, M. Xu, B. Wang, A novel reusable
nanocomposite adsorbent, xanthated Fe3O4-chitosan grafted
onto graphene oxide, for removing Cu(II) from aqueous
solutions, Appl. Surf. Sci., 367 (2016) 327–334.
- H. Jabeen, V. Chandra, S. Jung, Enhanced Cr(VI) removal
using iron nanoparticle decorated graphene, Nanoscale, 3
(2011) 3583–3585.
- M. Fan, J. Hu, R. Cao, K. Xiong, X. Wei, Modeling and
prediction of copper removal from aqueous solutions by
nZVI/rGO magnetic nanocomposites using ANN-GA and
ANN-PSO, Sci. Rep., 7 (2017) 1–14.
- C.M. Babu, B. Palanisamy, B. Sundaravel, K. Shanthi, V. Murugesan,
Dihalogen crosslinked Fe3O4-reduced graphene oxide
nanocomposites for arsenic and mercury adsorption, Sci. Adv.
Mater., 7 (2015) 794–805.
- J. Barker, Enhanced adsorption of carbon nanocomposites
exhausted with 2,4-dichlorophenoxyacetic acid after regeneration
by thermal oxidation and microwave irradiation, Environ.
Sci. Nano, 1 (2014) 113–116.
- R. Cao, M. Fan, J. Hu, W. Ruan, K. Xiong, X. Wei, Optimizing
low-concentration mercury removal from aqueous solutions
by reduced graphene oxide-supported Fe3O4 composites with
the aid of an artificial neural network and genetic algorithm,
Materials, 10 (2017) 1–17.
- Z. Clemente, V.L. Castro, C.M. Jonsson, L.F. Fraceto,
Ecotoxicology of nano-TiO2 an evaluation of its toxicity to
organisms of aquatic ecosystems, Int. J. Environ. Res., 6 (2011)
33–50.
- L. Li, J. Hu, X. Shi, M. Fan, L. Jin, X. Wei, Nanoscale zerovalent
metals: a review of synthesis, characterization, and
applications to environmental remediation, Environ. Sci.
Pollut. Res., 23 (2016) 1–21.
- R.D. Handy, R. Owen, E. Valsami-Jones, The ecotoxicology of
nanoparticles and nanomaterials: current status, knowledge
gaps, challenges, and future needs, Ecotoxicology, 17 (2008)
315–325.
- M. Markovic, Ecotoxicology of manufactured graphene
oxid nanomaterials and derivation of preliminary guideline
values for freshwater environments, Environ. Toxicol. Chem.,
37 (2018) 1340–1348.
- M.I.N. Ahamed, Ecotoxicity concert of nano zero-valent iron
particles-a review, J. Crit. Rev., 6 (2014) 112–120.
- Y.S. Temsah, E.J. Joner, Ecotoxicological effects on earthworms
of fresh and aged nano-sized zero-valent iron (nZVI) in soil,
Chemosphere, 89 (2012) 76–82.
- D. Rede, Lúcia H.M.L.M. Santos, S. Ramos, F. Oliva-Teles,
C. Antao, S.R. Sousa, C. Delerue-Matos, Ecotoxicological
impact of two soil remediation treatments in lactuca sativa
seeds, Chemosphere, 159 (2016) 193–198.
- X. Lv, Removal of chromium(VI) from wastewater by nanoscale
zero-valent iron particles supported on multiwalled
carbon nanotubes, Chemosphere, 85 (2011) 1204–1209.
- T. Zheng, Reactivity characteristics of nanoscale zerovalent
iron--silica composites for trichloroethylene remediation,
Environ. Sci. Technol., 42 (2008) 4494–4499.
- A. Tamion, E. Cadel, C. Bordel, D. Blavette, 3D atom probe
investigation of (Fe/Dy) magnetic multilayers, Surf. Interface
Anal., 39 (2007) 237–239.