References
- Y. Zheng, Q. Zhu, M. Huang, Y. Guo, J. Qin, Maize and weed
classification using color indices with support vector data
description in outdoor fields, Comput. Electron. Agric.,
141 (2017) 215–222.
- S. Shahbudin, A. Hussain, S.A. Samad, M.M. Mustafa, A.J. Ishak,
Optimal Feature Selection for SVM Based Weed Classification
via Visual Analysis, IEEE Region 10 Annual International
Conference, 1 (2010) 1647–1650.
- I. Sa, Z. Chen, M. Popovic, R. Khanna, F. Liebisch, J. Nieto,
R. Siegwart, WeedNet: dense semantic weed classification using
multispectral images and MAV for smart farming, IEEE Rob.
Autom. Lett., 3 (2018) 588–595.
- I. Ahmad, M.H. Siddiqi, I. Fatima, Weed Classification Based
on Haar Wavelet Transform via K-nearest Neighbor (k-NN)
for Real-time Automatic Sprayer Control System, International
Conference on Ubiquitous Information Management and
Communication, 1 (2017) 17.
- F. Vesali, M. Gharibkhani, M.H. Komarizadeh, Performance
evaluation of discriminant analysis and decision tree, for weed
classification of potato fields, Res. J. Appl. Sci. Eng. Technol., 4
(2012) 3215–3221.
- S. Lavania, P.S. Matey, Novel Method for Weed Classification
in Maize Field Using Otsu and PCA Implementation, IEEE
International Conference on Computational Intelligence and
Communication Technology, 1 (2015) 534–537.
- S. Zhi, Y. Liu, X. Li, Y. Guo, Toward real-time 3D object
recognition: A lightweight volumetric CNN framework using
multitask learning, Comput. Graphics (Pergamon), 71 (2018)
199–207.
- K. Yanai, R. Tanno, K. Okamoto, Efficient Mobile Implementation
of A CNN-based Object Recognition System, MM 2016, Proc.
2016 ACM Multimedia Conference, 1 (2016) 362–366.
- A. Qayyum, A.S. Malik, N.M. Saad, M. Iqbal, M.F. Abdullah,
W. Rasheed, T. AB Rashid Abdullah, M.Y.B. Jafaar, Scene
classification for aerial images based on CNN using sparse
coding technique, Int. J. Remote Sens., 38 (2017) 2662–2685.
- Y. Zhao, J. Ma, X. Li, J. Zhang, Saliency detection and deep
learning-based wildfire identification in UAV imagery, Sensors,
18 (2018) 712.
- W. Li, H. Fu, L. Yu, A. Cracknell, Deep learning based oil palm
tree detection and counting for high-resolution remote sensing
images, Remote Sens., 9 (2017) 22.
- J.S. Moon, C. Kim, Y. Youm, J. Bae, UNI-Copter: A portable
single-rotor-powered spherical unmanned aerial vehicle (UAV)
with an easy-to-assemble and flexible structure, J. Mech. Sci.
Technol., 32 (2018) 2289–2298.
- X. Qi, J. Qi, D. Theilliol, D. Song, Y. Zhang, J. Han, Selfhealing
control design under actuator fault occurrence on
single-rotor unmanned helicopters, J. Intell. Rob. Syst., 84 (2016)
21–35.
- X. Zhang, X. Li, H. Pei, R. Huang, Design of self balancing
anti disturbance system for multi rotor UAV, Telkomnika
(Telecommunication Computing Electronics and Control), 14
(2016) 363–371.
- S. Wang, Z. Zhen, J. Jiang, X. Wang, Flight tests of autopilot
integrated with fault-tolerant control of a small fixedwing
UAV, Math. Prob. Eng., 2016 (2016), https://doi.
org/10.1155/2016/2141482.
- C. Li, J. Shen, S. Zhai, C. Wang, J. Yang, Active flow vector flight
control using only SJAs for a fixed-wing UAV, IEEE Access, 6
(2018) 76535–76545.
- A. Oscar, C.T. Calafate, Z.N. Roberto, N. Enrico, H.O. Enrique,
C. Juan-Carlos, M. Pietro, A discretized approach to air pollution
monitoring using UAV-based sensing, Mobile Network Appl.,
23 (2018) 1693–1702.
- M. Shi, K. Qin, K. Li, Y. Zheng, Design and testing on autonomous
multi-UAV cooperation for high-voltage transmission line
inspection, Autom. Electr. Power Syst., 41 (2017) 117–122.
- C. Nived, L. Thomas, S. Cyrill, Robust long-term registration of
UAV images of crop fields for precision agriculture, IEEE Rob.
Autom. Lett., 3 (2018) 3097–3104.
- D. Yin, L. Wang, Individual mangrove tree measurement using
UAV-based LiDAR data: possibilities and challenges, Remote
Sens. Environ., 223 (2019) 34–49.
- B. Mesay Belete, Z. Abdallah, N. Abdelhamid, M. Farid, A
convolutional neural network approach for assisting avalanche
search and rescue operations with UAV imagery, Remote Sens.,
9 (2017) 100, https://doi.org/10.3390/rs9020100.
- L.F. Gonzalez, G.A. Montes, E. Puig, S. Johnson, K. Mengersen,
K.J. Gaston, Unmanned aerial vehicles (UAVs) and artificial
intelligence revolutionizing wildlife monitoring and
conservation, Sensors, 16 (2016) 97–115.
- X. Wang, H. Sun, Y. Long, L. Zheng, H. Liu, M. Li, Development
of visualization system for agricultural UAV crop growth
information collection, IFAC-Papers On Line, 51 (2018) 631–636.
- Z. Wei, Y. Han, M. Li, K. Yang, Y. Yang, Y. Luo, S. Ong, A small
UAV based multi-temporal image registration for dynamic
agricultural terrace monitoring, Remote Sens., 9 (2017) 904,
https://doi.org/10.3390/rs9090904.
- P. Zhang, K. Wang, Q. Lyu, S. He, S. Yi, R. Xie, Y. Zheng, Y. Ma, L.
Deng, Droplet distribution and control against citrus Leafminer
with UAV spraying, Int. J. Rob. Autom., 32 (2017) 299–307.
- D.H. Hubel, T.N. Wiesel, Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex, J. Physiol.,
160 (1962) 106–154.
- S. Miyake, K. Fukushima, A neural network model for the
mechanism of feature-extraction, Biol. Cybern., 50 (1984)
377–384.
- Y. Lecun, B. Boser, J.S. Denker, Backpropagation applied to
handwritten zip code recognition, Neural Comput., 1 (2014)
541–551.
- Y. Lecun, L. Bottou, Y. Bengio, Gradient-based learning applied
to document recognition, Proc. IEEE, 86 (1998) 2278–2324.
- K. Alex, I. Sutskever, G. Hinton, ImageNet Classification with
Deep Convolutional Neural Networks, NIPS Curran Associates
Inc., 2012.
- A. Radman, N. Zainal, S.A. Suandi, Automated segmentation
of iris images acquired in an unconstrained environment using
HOG-SVM and GrowCut, Digital Signal Process, 64 (2017)
60–70.