References
- T. Saleh, Mercury sorption by silica/carbon nanotubes and
silica/activated carbon: a comparison study, J. Water Supply
Res. Technol. AQUA, 64 (2015) 892.
- V.B. Yadava, R. Gadia, S. Kalra, Clay based nanocomposites
for removal of heavy metals from water: a review, J. Environ.
Manage., 232 (2019) 803–817.
- H.N.M.E. Mahmud, A.O. Huq, R. Binti Yahya, The removal
of heavy metal ions from wastewater/aqueous solution
using polypyrrole-based adsorbents, RSC Adv., 18 (2016)
14778–14791.
- H. Javadian, Application of kinetic, isotherm and thermodynamic
models for the adsorption of Co(II) ions on polyaniline/
polypyrrole copolymer nanofibers from aqueous solution,
J. Ind. Eng. Chem., 20 (2014) 4233–4241.
- B. Samiey, C.H. Cheng, J. Wu, Organic-inorganic hybrid
polymers as adsorbents for removal of heavy metal ions from
solutions: a review, Materials, 7 (2014) 673–726.
- M.A. Renu, S. Kailash, S. Upadhyaya, R.K. Dohare, Removal
of heavy metals from wastewater using modified agricultural
adsorbents, Mater. Today:. Proc., 4 (2017) 10534–10538.
- S. Hydari, H. Sharififard, M. Nabavinia, M.R.A. Parvizi,
Comparative investigation on removal performances of commercial
activated carbon, chitosan biosorbent and chitosan/
activated carbon composite for cadmium, Chem. Eng. J.,
194 (2012) 276–282.
- Y.C. Sharma, V. Srivastava, V.K. Singh, S.N. Kaul, C.H. Weng,
Nano-adsorbents for the removal of metallic pollutants from
water and wastewater, Environ. Technol., 30 (2009) 583–609.
- A. Amari, M. Chlendi, A. Gannouni, A. Bellagi, Optimised
activation of bentonite for toluene adsorption, Appl. Clay Sci.,
47 (2010) 457–461.
- M. Auta, B.H. Hameed, Acid modified local clay beads as
effective low-cost adsorbent for dynamic adsorption of
methylene blue, J. Ind. Eng. Chem., 19 (2013) 1153–1161.
- A.K. Panda, B.G. Mishra, D.K. Mishra, R.K. Singh, Effect of
sulphuric acid treatment on the physico-chemical characteristics
of kaolin clay, Colloids Surf., A, 363 (2010) 98–104.
- E. Makó, Z. Senkár, J. Kristóf, V. Vágvölgyi, Surface modification
of mechanochemically activated kaolinites by selective leaching,
J. Colloid Interface Sci., 294 (2006) 362–370.
- C. Belver, M.A.B. Munoz, M.A. Vicente, Chemical activation
of a kaolinite underacid and alkaline conditions, Chem. Mater.,
14 (2002) 2033–2043.
- J. Madejova, FTIR techniques in clay mineral studies, Vib.
Spectrosc., 31 (2003) 1–10.
- B.N. Dudkin, I.V. Loukhina, E.G. Avvakumov, V.P. Isupov,
Application of mechnochemical treatment of disintegration of
kaolinite with sulphuric acid, Chem. Sustainable Dev., 12 (2004)
327–330.
- R. Delhez, T.H. Keijser, E.J. Mittemeijer, E. Fresenius,
Determination of crystallite size and lattice distortions through
X-ray diffraction line profile analysis, Anal. Chem., 312 (1982)
1–10.
- H. Suquet, Effects of dry grinding and leaching on the crystal
structure of chrysotile, Clays Clay Miner., 37 (1989) 439–445.
- K.K. Taha, M.S. Tagelsir, A.M. Musa, Performance of Sudanese
activated bentonite in bleaching cotton seed oil, J. Bangladesh
Chem. Soc., 24 (2011) 191–201.
- N. Hula, O. Muserret, S. Yukusel, The effect of sulphuric acid
activation on crystallinity, surface area, porosity, surface acidity
and bleaching power of bentonite, J. Food Chem., 105 (2007)
156–163.
- F. Hussin, M.K. Aroua, W.M.A.W. Daud, Surface chemistry and
activation of bleaching earth: a review, Chem. Eng. J., 170 (2011)
90–106.
- A. Olgun, N. Atar, Equilibrium, thermodynamics and kinetic
studies for the adsorption of lead(II) and nickel(II) onto clay
mixture containing boron impurity, J. Ind. Eng. Chem., 18 (2012)
1751–1757.
- M. Auta, B.H. Hammed, Optimized waste tea activated carbon
for adsorption of methylene blue and acid blue and acid blue
29 dyes using response surface methodology, Chem. Eng. J.,
175 (2011) 233–243.
- L.G.T. Dos Reis, N.F. Robaina, W.F. Pacheco, R.J. Cassella,
Separation of Malachite Green and Methyl Green cationic dyes
from aqueous medium by adsorption on Amberlite XAD-2 and
XAD-4 resins using sodium dodecylsulfate as carrier, Chem.
Eng. J., 171 (2011) 532–540.
- N. Atar, A. Olgun, Removal of basic and acid dyes from aqueous
solution, Desalination, 249 (2009) 109.
- F.D. Badii, M.A. Ardjani, N.Y. Saberi, S.Z. Limaee Shifaei,
Adsorption of Acid Blue 25 on diatomite in aqueous solutions,
Indian J. Chem. Technol., 17 (2010) 7–16.
- Y. Salameh, N. Al-Lagtah, M.N.M. Ahmad, S.J. Allen,
G.M. Walker, Kinetic and thermodynamic investigations on
arsenic adsorption onto dolomitic sorbents, Chem. Eng. J.,
160 (2010) 440–446.
- I. Langmuir, The constitution and fundamental properties
of solids and liquids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
- H.M.F. Freundlich, Over the adsorption in solution, J. Physiochem.,
57 (1906) 385–470.
- M.J. Temkin, V. Pyzhev, Recent modifications to Langmuir
isotherms, Acta Physiochemical., 12 (1940) 217–225.
- N. Atar, A. Olgun, S. Wang, Adsorption of cadmium(II)
and zinc(II) on boron enrichment process waste in aqueous
solutions: batch and fixed-bed system studies, Chem. Eng. J.,
192 (2012) 1–7.
- C.M. Futalan, C.C. Kan, M.L. Dalida, K.J. Hsien, C. Pascua,
M.W. Wan, Comparative and competitive adsorption of copper,
lead, and nickel using chitosan immobilized on bentonite,
Carbohydr. Polym., 83 (2011) 528–536.
- M. Eloussaief, M. Benzina, Efficiency of natural and acidactivated
clays in the removal of Pb(II) from aqueous solutions,
J. Hazard. Mater., 178 (2011) 753–757.
- F. Sharifipour, S. Hojati, A. Landi, A. Faz Cano, Kinetics and
thermodynamics of lead adsorption from aqueous solutions
onto Iranian sepiolite and zeolite, Int. J. Environ. Res., 9 (2015)
1001–1010.
- A. Sdiri, K. Mohamed, B. Samir, E. Sherif, A natural clay
adsorbent for selective removal of lead from aqueous solutions,
J. Appl. Clay Sci., 126 (2016), 89–97.
- T. Wajima, Preparation of adsorbent with lead removal ability
from paper sludge using sulfuric acid impregnation, APCBEE
Procedia, 10 (2014) 164–169.
- A. Sdiri, T. Higashi, T. Hatta, F. Jamoussi, N. Tase, Evaluating the
adsorptive capacity of montmorillonitic and calcareous clays on
the removal of several heavy metals in aqueous systems, Chem.
Eng. J., 172 (2011) 37–46.
- A. Salem, R. Akbari Sene, Removal of lead from solution by
combination of natural zeolite–kaolin–bentonite as a new lowcost
adsorbent, Chem. Eng. J., 174 (2011) 619–628.
- A. Sari, M. Tuzen, D. Citak, M. Soylak, Equilibrium, kinetic and
thermodynamic studies of adsorption of Pb(II) from aqueous
solution onto Turkish kaolinite clay, J. Hazard. Mater., 149 (2007)
283–291.
- A. Shahat, M.R. Awual, M.A. Khaleque, M.Z. Alam, M. Naushad,
A.M.S. Chowdhury, Large-pore diameter nano-adsorbent and
its application for rapid lead(II) detection and removal from
aqueous media, Chem. Eng. J., 273 (2015) 286–295.
- V. Vetriselvi, R. Jaya Santhi, Redox polymer as an adsorbent for
the removal of Chromium(VI) and lead(II) from the tannery
effluents, Water Res. Ind., 10 (2015) 39–52.
- D. Tiwari, Lalhmunsiama, S.M. Lee, Iron-impregnated activated
carbons precursor to rice hulls and areca nut waste in the
remediation of Cu(II) and Pb(II) contaminated waters: a physicochemical
studies, Desal. Wat. Treat., 53 (2015) 1591–1605.
- S.M. Lee, C. Laldawngliana, D. Tiwari, Iron oxide nanoparticles-
immobilized-sand material in the treatment of Cu(II),
Cd(II) and Pb(II) contaminated waste waters, Chem. Eng. J.,
195–196 (2012) 103–111.
- Lalhmunsiama, S.M. Lee, D. Tiwari, Manganese oxide
immobilized activated carbons in the remediation of aqueous
wastes contaminated with copper (II) and lead (II), Chem. Eng.
J., 225 (2013) 128–137.
- S. Lagergren, S.K. Svenska, On the theory of so-called adsorption
of dissolved substances, Royal Swedish Acad. Sci. Doc., Band
24 (1898) 1–13.
- Y.S. Ho, S. McKay, Pseudo-second-order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- S. Azizian, B. Yahyaei, Adsorption of 18-crown-6 from aqueous
solution on granular activated carbon: a kinetic modeling study,
J. Colloid Interface Sci., 299 (2006) 112–115.
- L.T. Nanganoa, J.M. Ketcha, J.N. Ndi, Kinetic and equilibrium
modeling of the adsorption of amaranth from aqueous solution
onto smectite clay, Res. J. Chem. Sci., 4 (2014) 7–14.
- S.S.M. Hassan, N.S. Awwad, H.A. Aboterika, Removal of
synthetic reactive dyes from textile wastewater by Sorel’s
cement, J. Hazard. Mater., 162 (2009) 994–999.
- S. Hong, C. Wen, J. He, F. Gan, Y. Ho, Adsorption thermodynamics
of Methylene Blue onto bentonite, J. Hazard. Mater.,
167 (2009) 630–633.
- H. Aghdasinia, H.R. Asibi, Adsorption of a cationic dye
(methylene blue) by Iranian natural clays from aqueous
solutions: equilibrium, kinetic and thermodynamic study,
Environ. Earth Sci., 77 (2018) 218.
- Q. Li, Q. Yue, Y. Su, B. Gao, H. Sun, Equilibrium, thermodynamics
and process design to minimize adsorbent amount for the
adsorption of acid dyes onto cationic polymer-loaded bentonite,
Chem. Eng. J., 158 (2010) 489–449.
- T. Chen, T.Q. Zhang, T.H. Zhang, C.H. Gan, C.Y. Zheng,
G. Yu, Carbon nanotube reinforced hydroxyapatite composite
coatings produced through laser surface alloying, Carbon, 44
(2006) 37–45.
- F.N. Oskui, H. Aghdasinia, M.G. Sorkhabi, Adsorption of Cr(III)
using an Iranian nanoclay: applicable to tannery wastewater:
equilibrium, kinetic, and thermodynamic, Environ. Earth Sci.,
78 (2019) 106.