References

  1. M. Pedro-Monzonís, A. Solera, J. Ferrer, T. Estrela, J. Paredes-Arquiola, A review of water scarcity and drought indexes in water resources planning and management, J. Hydrol., 527 (2015) 482–493.
  2. N. Hanasaki, S. Fujimori, T. Yamamoto, S. Yoshikawa, Y. Masaki, Y. Hijioka, M. Kainuma, Y. Kanamori, T. Masui, K. Takahashi, S. Kanae, A global water scarcity assessment under shared socio-economic pathways - Part 2: water availability and scarcity, Hydrol. Earth Syst. Sci. Discuss., 17 (2013) 2393–2413.
  3. S.M. Quiring, Developing objective operational definitions for monitoring drought, J. Appl. Meteorol. Climatol., 48 (2009) 1217–1229.
  4. EU, Report on the Review of the European Water Scarcity and Drought Policy, European Commission and European Environment Agency, 2012. Available at: https://ec.europa.eu/environment/water/quantity/pdf/COM-2012-672final-EN.pdf
  5. EU, Addressing the Challenge of Water Scarcity and Droughts in the European Union, Communication from the Commission to the Council and the European Parliament, Addressing the Challenge of Water Scarcity and Droughts in the European Union, European Commission, Brussels, 2007.
  6. A.F.V. Loon, H.A.J.V. Lanen, Making the distinction between water scarcity and drought using an observation-modeling framework, Water Resour. Res., 49 (2013) 1483–1502.
  7. D. Han, M.J. Currell, G. Cao, Deep challenges for China’s war on water pollution, Environ. Pollut., 218 (2016) 1222–1233.
  8. M. Kummu, P.J. Ward, H. de Moel, O. Varis, Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia, Environ. Res. Lett., 5 (2010) 034006.
  9. G. Tsakiris, H. Vangelis, Establishing a drought index incorporating evapotranspiration, Eur. Water, 9 (2005) 3–11.
  10. C.-W. Chen, C.-C. Wei, H.-J. Liu, N.-S. Hsu, Application of neural networks and optimization model in conjunctive use of surface water and groundwater, Water Resour. Manage., 28 (2014) 2813–2832.
  11. A. Singh, Optimal allocation of resources for increasing farm revenue under hydrological uncertainty, Water Resour. Manage., 30 (2016) 2569–2580.
  12. A.N. Angelakis, X.Y. Zheng, Evolution of water supply, sanitation, wastewater, and storm water technologies globally, Water, 7 (2015) 455–463.
  13. M. Salgot, M. Folch, Wastewater treatment and water reuse, Curr. Opin. Environ. Sci. Health, 2 (2018) 64–74.
  14. Z. Hu, S. Yan, L. Yao, M. Moudi, Efficiency evaluation with feedback for regional water use and wastewater treatment, J. Hydrol., 562 (2018) 703–711.
  15. X. Garcia, D. Pargament, Reusing wastewater to cope with water scarcity: economic, social and environmental considerations for decision-making, Resour. Conserv. Recycl., 101 (2015) 154–166.
  16. L. Yang, H. Ouyang, K. Fang, L. Ye, J. Zhang, Evaluation of regional environmental efficiencies in China based on superefficiency- DEA, Ecol. Indic., 51 (2015) 13–19.
  17. G. Wu, Z. Miao, S. Shao, K. Jiang, Y. Geng, D. Li, H. Liu, Evaluating the construction efficiencies of urban wastewater transportation and treatment capacity: evidence from 70 megacities in China, Resour. Conserv. Recycl., 128 (2018) 373–381.
  18. G. Deng, L. Li, Y. Song, Provincial water use efficiency measurement and factor analysis in China: Based on SBM-DEA model, Ecol. Indic., 69 (2016) 12–18.
  19. X. Zhou, Z. Xu, L. Yao, Y. Tu, B. Lev, W. Pedrycz, A novel data envelopment analysis model for evaluating industrial production and environmental management system, J. Cleaner Prod., 170 (2018) 773–788.
  20. M. Shafiee, F.H. Lotfi, H. Saleh, M. Ghaderi, A mixed integer bi-level DEA model for bank branch performance evaluation by Stackelberg approach, J. Ind. Eng. Int., 12 (2016) 81–91.
  21. Y. Bian, S. Yan, H. Xu, Efficiency evaluation for regional urban water use and wastewater decontamination systems in China: a DEA approach, Resour. Conserv. Recycl., 83 (2014) 15–23.
  22. UNICEF and World Health Organization, Progress on Sanitation and Drinking Water – 2015 Update and MDG Assessment, (https://www.unicef.org/publications/index_82419.html) (accessed 20 September 2018), UNICEF, 2015. Available at: https://www.unicef.org/publications/index_82419.html.
  23. UN, Food and Agriculture Organization of the United Nations, Food and Agriculture Organization (FAO), 2018. Available at: http://www.fao.org/family-farming/detail/en/c/1189078/
  24. M. Telkes, Fresh water from seawater by solar distillation, Ind. Eng. Chem., 45 (1953) 1108–1114.
  25. V. Velmurugan, S.S. Kumaran, V.N. Prabhu, K. Srithar, Productivity enhancement of stepped solar still: performance analysis, Therm. Sci., 12 (2008) 153–163.
  26. K. Selvaraj, A. Natarajan, Factors influencing the performance and productivity of solar stills - a review, Desalination, 435 (2018) 181–187.
  27. N.K. Dhiman, Transient analysis of a spherical solar still, Desalination, 69 (1988) 47–55.
  28. R.V. Dunkle, Solar Water Distillation: The Roof Type Still and a Multiple Effect Diffusion Still, International Heat Transfer Conference, University of Colorado, USA, 1961, p. 895.
  29. G. Menguy, M. Benoit, R. Louat, A. Makki, M. Schwartz, New Solar Still Design and Experimentation (The Wiping Spherical Still), Private Communication, Group D {} Etudes Thermiques et Solaires, Universit Claude Bernard, 1980.
  30. A.L. Moreno, C.A. Castro, A. Centeno, S.A. Giraldo, Cinética de la Desinfección Fotocatalítica de Agua contaminada con E. coli: Efecto de la Concentración del Foto- catalizador y la Potencia de Irradiación, Informacion tecnologica, 22 (2011) 69–78.
  31. N. Daneshvar, A. Niaei, S. Akbari, S. Aber, N. Kazemian, Photocatalytic disinfection of water polluted by Pseudomonas aeruginosa, Global Nest J, 9 (2007) 1–5.
  32. P. Bonaveri, M. Sánchez, Luis, Aplicaciones de Energía Solar. De la limitante de los re-cursos fósiles y la sostenibilidad, hacia la implementación de soluciones limpias, Editorial Uniautonoma, Universidad Autonoma del Caribe, 2017 Available at: https://www.librosyeditores.com/ingenieria/9781-aplicacionesde-energia-solar-de-la-limitante-de-os-recursos-fosiles-yla-sostenibilidad-haca-la-implementacion-de-soluciones-9789585431010.html.
  33. L. Birnhack, N. Voutchkov, O. Lahav, Fundamental chemistry and engineering aspects of post-treatment processes for desalinated water—a review, Desalination, 273 (2011) 6–22.
  34. P. Sarin, V.L. Snoeyink, J. Bebee, W.M. Kriven, J.A. Clement, Physicochemical characteristics of corrosion scales in old iron pipes, Water Res., 35 (2001) 2961– 2969.
  35. M. Edwards, Controlling corrosion in drinking water distribution systems: a grand challenge for the 21st century, Water Sci. Technol., 49 (2004) 1–8.
  36. T.F. Seacord, J.E. Singley, G. Juby, N. Voutchkov, Post-Treatment Concepts for Seawater and Brackish Water Desalting, AMTA/SEDA Technology Transfer Workshop, Isle of Palms, SC, 2003.
  37. WHO and FAO, Safety Evaluation of Certain Food Additives and Contaminants, Seventy-third Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), Geneva, 2008.
  38. A. Plottu-Pecheux, C. Democrate, B. Houssais, D. Gatel, J. Cavard, Controlling the corrosiveness of blended waters, Desalination, 138 (2001) 237–249.
  39. O. Lahav, M. Kochva, J. Tarchitzky, Potential drawbacks associated with agricultural irrigation with treated wastewaters from desalinated water origin and possible remedies, Water Sci. Technol., 61 (2010) 2451–2460.
  40. O. Lahav, L. Birnhack, Quality criteria for desalinated water following post-treatment, Desalination, 207 (2007) 286–303.
  41. C. Sánchez, M.C. López, L.A. Galeano, Y. Qvarnstrom, K. Houghton, J.D. Ramírez, Molecular detection and genotyping of pathogenic protozoan parasites in raw and treated water samples from southwest Colombia, Parasites Vectors, 11 (2018) 563.
  42. S.-C. Pai, Y.-J. Tsau, T.-I. Yang, pH and buffering capacity problems involved in the determination of ammonia in saline water using the indophenol blue spectrophotometric method, Anal. Chim. Acta, 434 (2001) 209–216.
  43. D. Pimentel, J. Houser, E. Preiss, O. White, H. Fang, L. Mesnick, T. Barsky, S. Tariche, J. Schreck, S. Alpert, Water resources: agriculture, the environment, and society, Bioscience, 47 (1997) 97–106.
  44. A. Catling, I. Abubakar, I.R. Lake, L. Swift, P.R. Hunter, A systematic review of analytical observational studies investigating the association between cardiovascular disease and drinking water hardness, J. Water Health, 6 (2008) 433–442.
  45. R.W. Morris, M. Walker, L.T. Lennon, A.G. Shaper, P.H. Whincup, Hard drinking water does not protect against cardiovascular disease: new evidence from the British Regional Heart Study, Eur. J. Cardiovasc. Prevent. Rehabil., 15 (2008) 185–189.
  46. WHO, Dengue Guidelines for Diagnosis, Treatment, Prevention and Control, World Health Organization, 2009. Available at: https://www.who.int/tdr/publications/documents/denguediagnosis. pdf and https://www.who.int/csr/resources/publica tions/dengue_9789241547871/en/
  47. R.J. Macdonald, A. Ernst, Disinfection efficiency and problems associated with maturation ponds, Water Sci. Technol., 19 (1987) 557–567.
  48. S.H. Lin, C.F. Peng, Continuous treatment of textile wastewater by combined coagulation, electrochemical oxidation and activated sludge, Water Res., 30 (1996) 587–592.
  49. S. Sandhya, K. Swaminathan, Kinetic analysis of treatment of textile wastewater in hybrid column upflow anaerobic fixed bed reactor, Chem. Eng. J., 122 (2006) 87–92.
  50. C.A. Togo, C.C.Z. Mutambanengwe, C.G. Whiteley, Decolourisation and degradation of textile dyes using a sulphate reducing bacteria (SRB)-biodigester microflora co-culture, Afr. J. Biotechnol., 7 (2008) 114–121.
  51. O.J. Hao, H. Kim, P.-C. Chiang, Decolorization of wastewater, Crit. Rev. Env. Sci. Technol., 30 (2000) 449–505.
  52. I. Ciabatti, F. Tognotti, L. Lombardi, Treatment and reuse of dyeing effluents by potassium ferrate, Desalination, 250 (2010) 222–228.
  53. M. Marcucci, G. Nosenzo, G. Capannelli, I. Ciabatti, D. Corrieri, G. Ciardelli, Treatment and reuse of textile effluents based on new ultrafiltration and other membrane technologies, Desalination, 138 (2001) 75–82.
  54. S. Barredo-Damas, M.I. Alcaina-Miranda, M.I. Iborra-Clar, A. Bes-Pia, J.A. Mendoza-Roca, A. Iborra-Clar, Study of the UF process as pretreatment of NF membranes for textile wastewater reuse, Desalination, 200 (2006) 745–747.
  55. A.K. Verma, R.R. Dash, P. Bhunia, A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters, J. Environ. Manage., 93 (2012) 154–168.
  56. S.H. Park, L.P. Padhye, P. Wang, M. Cho, J.-H. Kim, C.-H. Huang, N-nitrosodimethylamine (NDMA) formation potential of amine-based water treatment polymers: effects of in situ chloramination, breakpoint chlorination, and pre-oxidation, J. Hazard. Mater., 282 (2015) 133–140.
  57. A.D. Shah, Z.-Q. Liu, E. Salhi, T. Höfer, U. von Gunten, Peracetic acid oxidation of saline waters in the absence and presence of H2O2: secondary oxidant and disinfection byproduct formation, Environ. Sci. Technol., 49 (2015) 1698–1705.
  58. P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions, Adv. Environ. Res., 8 (2004) 501–551.
  59. T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresour. Technol., 77 (2001) 247–255.
  60. R. Sommer, W. Pribil, S. Appelt, P. Gehringer, H. Eschweiler, H. Leth, A. Cabaj, T. Haider, Inactivation of bacteriophages in water by means of non-ionizing (UV-253.7 nm) and ionizing (gamma) radiation: a comparative approach, Water Res., 35 (2001) 3109–3116.
  61. A. Vogelpohl, Applications of AOPs in wastewater treatment, Water Sci. Technol., 55 (2007) 207–211.
  62. K.W. Moody, J.L. Dally, Apparatus and Method for UV Wastewater Purification in Septic Tank Systems, U.S. Provisional Patent Application, 2001.
  63. V. Mottier, F. Brissaud, P. Nieto, Z. Alamy, Wastewater treatment by infiltration percolation: a case study, Water Sci. Technol., 41 (2000) 77–84.
  64. H. Ludwig, M. Hetschel, Treatment of distillates and permeates from seawater desalination plants, Desalination, 58 (1986) 135–154.
  65. E. Gabbrielli, A tailored process for remineralization and potabilization of desalinated water, Desalination, 39 (1981) 503–520.
  66. P. Leroy, Corrosion control of feeders carrying potable water from desalination of sea water case of the Yanbu Medina water supply system (Saudi Arabia), Desalination, 44 (1983) 317–324.
  67. B.R. Lewandowski, K.L. Lusker, Z. LeJeune, D. Lytle, P. Zhou, P. Sprunger, J. Garno, Impact of pH, dissolved inorganic carbon, and polyphosphates for the initial stages of water corrosion of copper surfaces investigated by AFM and NEXAFS, Corros. Sci., 1 (2011) 16–26.
  68. I. Al-Hayeka, O.O. Badran, The effect of using different designs of solar stills on water distillation, Desalination, 169 (2004) 121–127.
  69. K.H. Nayi, K.V. Modi, Pyramid solar still: a comprehensive review, Renewable Sustainable Energy Rev., 81 (2018) 136–148.
  70. T. Arunkumar, D. Denkenberger, R. Velraj, R. Sathyamurthy, H. Tanaka, K. Vinothkumar, Experimental study on a parabolic concentrator assisted solar desalting system, Energy Convers. Manage., 105 (2015) 665–674.
  71. A.F. Mashaly, A.A. Alazba, Experimental and modeling study to estimate the productivity of inclined passive solar still using ANN methodology in arid conditions, J. Water Supply Res. Technol. AQUA, 67 (2018) 332–346.
  72. N. Rahbar, J.A. Esfahani, Experimental study of a novel portable solar still by utilizing the heatpipe and thermoelectric module, Desalination, 284 (2012) 55–61.
  73. V. Velmurugan, M. Gopalakrishnan, R. Raghu, K. Srithar, Single basin solar still with fin for enhancing productivity, Energy Convers. Manage., 49 (2008) 2602–2608.
  74. H. Aybar, H. Assefi, Simulation of a solar still to investigate water depth and glass angle, Desal. Wat. Treat., 7 (2009) 35–40.
  75. S. Nijmeh, S. Odeh, B. Akash, Experimental and theoretical study of a single-basin solar sill in Jordan, Int. Commun. Heat Mass Transfer, 32 (2005) 565–572.
  76. A.A. El-Sebaii, S.J. Yaghmour, F.S. Al-Hazmi, A.S. Faidah, F.M. Al-Marzouki, A.A. Al-Ghamdi, Active single basin solar still with a sensible storage medium, Desalination, 249 (2009) 699–706.
  77. H. Panchal, M.I. Patel, B. Patel, R. Goswami, M. Doshi, A comparative analysis of single slope solar still coupled with flat plate collector and passive solar still, Int. J. Res. Rev. Appl. Sci., 7 (2011) 111–116.
  78. F.F. Tabrizi, A.Z. Sharak, Experimental study of an integrated basin solar still with a sandy heat reservoir, Desalination, 253 (2010) 195–199.
  79. K.K. Murugavel, S. Sivakumar, J.R. Ahamed, K.K. Chockalingam, K. Srithar, Single basin double slope solar still with minimum basin depth and energy storing materials, Appl. Energy, 87 (2010) 514–523.
  80. M.R. Rajamanickam, A. Ragupathy, Influence of water depth on internal heat and mass transfer in a double slope solar still, Energy Procedia, 14 (2012) 1701–1708.
  81. H. Nishikawa, T. Tsuchiya, Y. Narasaki, I. Kamiya, H. Sato, Triple effect evacuated solar still system for getting fresh water from seawater, Appl. Therm. Eng., 18 (1998) 1067–1075.
  82. J. Xiong, G. Xie, H. Zheng, Experimental and numerical study on a new multi-effect solar still with enhanced condensation surface, Energy Convers. Manage., 73 (2013) 176–185.
  83. A.A. El-Sebaii, Thermal performance of a triple-basin solar still, Desalination, 174 (2005) 23–37.
  84. M.I. Shatat, K. Mahkamov, Determination of rational design parameters of a multi-stage solar water desalination still using transient mathematical modelling, Renewable Energy, 35 (2010) 52–61.
  85. Z.M. Omara, A.E. Kabeel, M.M. Younes, Enhancing the stepped solar still performance using internal and external reflectors, Energy Convers. Manage., 78 (2014) 876–881.
  86. M.A. Eltawil, Z.M. Omara, Enhancing the solar still performance using solar photovoltaic, flat plate collector and hot air, Desalination, 349 (2014) 1–9.
  87. S. Kumar, A. Dubey, G.N. Tiwari, A solar still augmented with an evacuated tube collector in forced mode, Desalination, 347 (2014) 15–24.
  88. B.S. Kumar, S. Kumar, R. Jayaprakash, Performance analysis of a “V” type solar still using a charcoal absorber and a boosting mirror, Desalination, 229 (2008) 217–230.
  89. T. Arunkumar, R. Jayaprakash, D. Denkenberger, A. Ahsan, M.S. Okundamiya, S. Kumar, H. Tanaka, H.Ş. Aybar, An experimental study on a hemispherical solar still, Desalination, 286 (2012) 342–348.
  90. H.E. Fath, M. El-Samanoudy, K. Fahmy, A. Hassabou, Thermaleconomic analysis and comparison between pyramid-shaped and single-slope solar still configurations, Desalination, 159 (2003) 69–79.
  91. A. Kumar, J.D. Anand, Modelling and performance of a tubular multiwick solar still, Energy, 17 (1992) 1067–1071.
  92. H.E. Gad, S.S. El-Din, A.A. Hussien, K. Ramzy, Thermal analysis of a conical solar still performance: an experimental study, Sol. Energy, 122 (2015) 900–909.
  93. M. Feilizadeh, M.K. Estahbanati, K. Jafarpur, R. Roostaazad, M. Feilizadeh, H. Taghvaei, Year-round outdoor experiments on a multi-stage active solar still with different numbers of solar collectors, Appl. Energy, 152 (2015) 39–46.
  94. A.E. Kabeel, A.M. Hamed, S.A. El-Agouz, Cost analysis of different solar still configurations, Energy, 35 (2010) 2901–2908.
  95. A. Ghoneyem, A. Ileri, Software to analyze solar stills and an experimental study on the effects of the cover, Desalination, 114 (1997) 37–44.
  96. A.K. Singh, G.N. Tiwari, P.B. Sharma, E. Khan, Optimization of orientation for higher yield of solar still for a given location, Energy Convers. Manage., 36 (1995) 175–181.
  97. R. Tripathi, G.N. Tiwari, Thermal modeling of passive and active solar stills for different depths of water by using the concept of solar fraction, Sol. Energy, 80 (2006) 956–967.
  98. G.N. Tiwari, J.M. Thomas, E. Khan, Optimisation of glass cover inclination for maximum yield in a solar still, Heat Recovery Syst. CHP, 14 (1994) 447–455.
  99. G.N. Tiwari, M.H.P. Garg, Effect of water flow over the glass cover of a single basin solar still with an intermittent flow of waste hot water in the basin, Energy Convers. Manage., 25 (1985) 315–322.
  100. A.A. El-Sebaii, Effect of wind speed on some designs of solar stills, Energy Convers. Manage., 41 (2000) 523–538.
  101. R. Sathyamurthy, S.A. El-Agouz, P.K. Nagarajan, J. Subramani, T. Arunkumar, D. Mageshbabu, B. Madhu, R. Bharathwaaj, N. Prakash, A review of integrating solar collectors to solar still, Renewable Sustainable Energy Rev., 77 (2017) 1069–1097.
  102. O.O. Badran, M.M. Abu-Khader, Evaluating thermal performance of a single slope solar still, Heat Mass Transfer, 43 (2007) 985–995.
  103. T. Arunkumar, D. Denkenberger, A. Ahsan, R. Jayaprakash, The augmentation of distillate yield by using concentrator coupled solar still with phase change material, Desalination, 314 (2013) 189–192.
  104. B.A. Akash, M.S. Mohsen, W. Nayfeh, Experimental study of the basin type solar still under local climate conditions, Energy Convers. Manage., 41 (2000) 883–890.
  105. H. Panchal, P.K. Shah, Investigation on solar stills having floating plates, Int. J. Energy Environ. Eng., 3 (2012) 8.
  106. K.K. Murugavela, K.K. Chockalingama, K. Srithar, Modeling and verification of double slope single basin solar still using laboratory and actual solar conditions, Jordan Mech. Ind. Eng., 3 (2009) 228–235.
  107. A.Z. Al-Garni, Enhancing the solar still using immersion type water heater productivity and the effect of external cooling fan in winter, Appl. Solar Energy, 48 (2012) 193–200.
  108. A.A. El-Sebaii, A.A. Al-Ghamdi, F.S. Al-Hazmi, A.S. Faidah, Thermal performance of a single basin solar still with PCM as a storage medium, Appl. Energy, 86 (2009) 1187–1195.
  109. Y. Tian, C.-Y. Zhao, A review of solar collectors and thermal energy storage in solar thermal applications, Appl. Energy, 104 (2013) 538–553.
  110. S.K. Singh, V.P. Bhatnagar, G.N. Tiwari, Design parameters for concentrator assisted solar distillation system, Energy Convers. Manage., 37 (1996) 247–252.
  111. K. Sampathkumar, P. Senthilkumar, Utilization of solar water heater in a single basin solar still—an experimental study, Desalination, 297 (2012) 8–19.
  112. A.S. Abdullah, Improving the performance of stepped solar still, Desalination, 319 (2013) 60–65.
  113. M.A. Eltawil, Z. Zhengming, Wind turbine-inclined still collector integration with solar still for brackish water desalination, Desalination, 249 (2009) 490–497.
  114. T. Arunkumar, R. Velraj, D. Denkenberger, R. Sathyamurthy, K. Vinothkumar, K. Porkumaran, A. Ahsan, Effect of heat removal on tubular solar desalting system, Desalination, 379 (2016) 24–33.
  115. T. Arunkumar, R. Velraj, D.C. Denkenberger, R. Sathyamurthy, K.V. Kumar, A. Ahsan, Productivity enhancements of compound parabolic concentrator tubular solar stills, Renewable Energy, 88 (2016) 391–400.
  116. L.E.M. Sánchez, P.D. Bonaveri, Presentación didáctica comparativa del beneficio ecológico-económico del uso de las energías alternativas en hogares comunitarios e infan- tiles en Barranquilla, en el marco del contexto de sostenibilidad energética, 2012.
  117. L.E.M. Sánchez, B. Arangoa, P. Daniel, Construction alternatives using low-cost materials for the thermal test of box-type solar cookers, Revista ION, 25 (2012) 17–23.
  118. P.D. Bonaveri, Ciencia, tecnología, sociedad global y medio ambiente, 2010.
  119. M.N. Chong, B. Jin, C.W. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water Res., 44 (2010) 2997–3027.
  120. R. George, N. Bahadur, N. Singh, R. Singh, A. Verma, A.K. Shukla, Environmentally benign TiO2 nanomaterials for removal of heavy metal ions with interfering ions present in tap water, Mater. Today:. Proc., 3 (2016) 162–166.
  121. M.I. Litter, Last advances on TiO2-photocatalytic removal of chromium, uranium and arsenic, Curr. Opin. Green Sustainable Chem., 6 (2017) 150–158.
  122. R. Molinari, C. Lavorato, P. Argurio, Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review, Catal. Today, 281 (2017) 144–164.
  123. M. Gmurek, M. Olak-Kucharczyk, S. Ledakowicz, Photochemical decomposition of endocrine disrupting compounds-a review, Chem. Eng. J., 310 (2017) 437–456.
  124. N.F.F. Moreira, J.M. Sousa, G. Macedo, A.R. Ribeiro, L. Barreiros, M. Pedrosa, J.L. Faria, M.F.R. Pereira, S. Castro-Silva, M.A. Segundo, C.M. Manaia, O.C. Nunes, A.M.T. Silva, Photocatalytic ozonation of urban wastewater and surface water using immobilized TiO2 with LEDs: micropollutants, antibiotic resistance genes and estrogenic activity, Water Res., 94 (2016) 10–22.
  125. C. Byrne, G. Subramanian, S.C. Pillai, Recent advances in photocatalysis for environmental applications, J. Environ. Chem. Eng., 6 (2018) 3531–3555.
  126. N. Shaham-Waldmann, Y. Paz, Away from TiO2: a critical mini review on the developing of new photocatalysts for degradation of contaminants in water, 42 (2016) 72–80.
  127. A. Fujishima, K. Honda, Photolysis-decomposition of water at the surface of an irradiated semiconductor, Nature, 238 (1972) 37–38.
  128. S. Banerjee, D.D. Dionysiou, S.C. Pillai, Self-cleaning applications of TiO2 by photoinduced hydrophilicity and photocatalysis, Appl. Catal., B, 176 (2015) 396–428.
  129. D.S. Muggli, L. Ding, Photocatalytic performance of sulphated TiO2 and Degussa P-25 TiO2 during oxidation of organics, Appl. Catal., B, 32 (2001) 181–194.
  130. Z. Zhang, C.-C. Wang, R. Zakaria, J.Y. Ying, Role of particle size in nanocrystalline TiO2-based photocatalysts, J. Phys. Chem. B, 102 (1998) 10871–10878.
  131. R.I. Bickley, T. Gonzalez-Carreno, J.S. Lees, L. Palmisano, R.J. Tilley, A structural investigation of titanium dioxide photocatalysts, J. Solid State Chem., 92 (1991) 178–190.
  132. D. Blake, Bibliography of Work on the Heterogeneous Photocatalytic Removal of Hazardous Compounds from Water and Air-Update Number 4 to October 2001, 2001.
  133. S. Sakthivel, H. Kisch, Daylight photocatalysis by carbonmodified titanium dioxide, Angew. Chem. Int. Ed., 42 (2003) 4908–4911.
  134. C. Byrne, R. Fagan, S. Hinder, D.E. McCormack, S.C. Pillai, New approach of modifying the anatase to rutile transition temperature in TiO2 photocatalysts, RSC Adv., 6 (2016) 95232–95238.
  135. A. Fujishima, X. Zhang, Titanium dioxide photocatalysis: present situation and future approaches, C.R. Chim., 9 (2006) 750–760.
  136. D. Li, H. Haneda, N.K. Labhsetwar, S. Hishita, N. Ohashi, Visible-light-driven photo-catalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies, Chem. Phys. Lett., 401 (2005) 579–584.
  137. H.M. Yadav, S.V. Otari, V.B. Koli, S.S. Mali, C.K. Hong, S.H. Pawar, S.D. Delekar, Preparation and characterization of copper-doped anatase TiO2 nanoparticles with visible light photocatalytic antibacterial activity, J. Photochem. Photobiol., A, 280 (2014) 32–38.
  138. L. Kösi, S. Papp, J. Ménesi, E. Illés, V. Zöllmer, A. Richardt, I. Dékány, Photocatalytic activity of silver-modified titanium dioxide at solid-liquid and solid-gas interfaces, Colloids Surf., A, 319 (2008) 136–142.
  139. S. Karvinen, The effects of trace elements on the crystal properties of TiO2, Solid State Sci., 5 (2003) 811–819.
  140. K.C. Heo, C.I. Ok, J.W. Kim, B.K. Moon, The effects of manganese ions and their magnetic properties on the anataserutile phase transition of nanocrystalline TiO2: Mn prepared by using the solvothermal method, J. Korean Phys. Soc., 47 (2005) 861–865.
  141. V. Etacheri, C.D. Valentin, J. Schneider, D. Bahnemann, S.C. Pillai, Visible-light activation of TiO2 photocatalysts: advances in theory and experiments, J. Photochem. Photobiol., C, 25 (2015) 1–29.
  142. A. Acher, E. Fischer, R. Turnheim, Y. Manor, Ecologically friendly wastewater disinfection techniques, Water Res., 31 (1997) 1398–1404.
  143. V. Lazarova, P. Savoye, M.L. Janex, E.R.B. Iii, M. Pommepuy, Advanced wastewater disinfection technologies: state of the art and perspectives, Water Sci. Technol., 40 (1999) 203–213.
  144. A. Dell’Erba, D. Falsanisi, L. Liberti, M. Notarnicola, D. Santoro, Disinfection by-products formation during wastewater disinfection with peracetic acid, Desalination, 215 (2007) 177–186.
  145. A.S. Sánchez, I.B.R. Nogueira, R.A. Kalid, Uses of the reject brine from inland desalination for fish farming, Spirulina cultivation, and irrigation of forage shrub and crops, Desalination, 364 (2015) 96–107.
  146. A. Giwa, V. Dufour, F.A. Marzooqi, M.A. Kaabi, S.W. Hasan, Brine management methods: Recent innovations and current status, Desalination, 407 (2017) 1–23.
  147. G.A. Bazedi, R.S. Ettouney, S.R. Tewfik, M.H. Sorour, M.A. El-Rifai, Salt recovery from brine generated by largescale seawater desalination plants, Desal. Wat. Treat., 52 (2014) 4689–4697.
  148. N. Afrasiabi, E. Shahbazali, RO brine treatment and disposal methods, Desal. Wat. Treat., 35 (2011) 39–53.
  149. C.J. Gabelich, P. Xu, Y. Cohen, Concentrate treatment for inland desalting, Sustainable Sci. Eng., 2 (2010) 295–326.
  150. F. Rodríguez-DeLaNuez, N. Franquiz-Suárez, D.E. Santiago, J.M. Veza, J.J. Sadhwani, Reuse and minimization of desalination brines: a review of alternatives, Desal. Wat. Treat., 39 (2012) 137–148.
  151. C. Kazner, S. Jamil, S. Phuntsho, H.K. Shon, T. Wintgens, S. Vigneswaran, Forward osmosis for the treatment of reverse osmosis concentrate from water reclamation: process performance and fouling control, Water Sci. Technol., 69 (2014) 2431–2437.
  152. C.R. Martinetti, A.E. Childress, T.Y. Cath, High recovery of concentrated RO brines using forward osmosis and membrane distillation, J. Membr. Sci., 331 (2009) 31–39.
  153. A. Subramani, J.G. Jacangelo, Treatment technologies for reverse osmosis concentrate volume minimization: a review, Sep. Purif. Technol., 122 (2014) 472–489.
  154. R. Raja, S. Hemaiswarya, R. Rengasamy, Exploitation of Dunaliella for β-carotene production, Appl. Microbiol. Biotechnol., 74 (2007) 517–523.
  155. R.E. Sergany, M.E. Fadly, A.E. Nadi, Brine desalination by using algae ponds under nature conditions, Am. J. Environ. Eng., 4 (2014) 75–79.