References

  1. R. Semiat, Energy issues in desalination process, Environ. Sci. Technol., 42 (2008) 8193–8201.
  2. B.A. Qureshi, S.M. Zubair, Exergetic analysis of a brackish water reverse osmosis desalination unit with various energy recovery systems, Energy, 93 (2015) 256–265.
  3. M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, Boston, 2003, Chapter 1.
  4. A.L. Desa, N.H.H. Hairom, L. Yong Ng, C. Yin Ng, M. Khairul, A.W. Mohammad, Industrial textile wastewater treatment via membrane photocatalytic reactor (MPR) in the presence of ZnO-PEG nanoparticles and tight ultrafiltration, J. Water Proc. Eng., 31 (2019) 100872.
  5. L.P. Raman, M. Cheryan, N. Rajagopalan, Consider nanofiltration for membrane separations, Chem. Eng. Prog., 90 (1994) 68–74.
  6. J. Han, Y.H. Cho, H. Kong, S. Han, H.B. Park, Preparation and characterization of novel acetylated cellulose ether (ACE) membranes for desalination applications, J. Membr. Sci., 428 (2013) 533–545.
  7. A.J. Schafer, A.G. Fane, Nanofiltration – Principles and Applications, Elsevier, New York, 2005, Chapter 4.
  8. B.B. Vyas, P. Ray, Preparation of nanofiltration membranes and relating surface chemistry with potential and topography: application in separation and desalting of amino acids, Desalination, 362 (2015) 104–116.
  9. R. Malaisamy, M.I. Bruening, High-flux nanofiltration membranes prepared by adsorption of multilayer polyelectrolyte membranes on polymeric supports, Langmuir, 21 (2005) 10587–10592.
  10. J. Saqib, A.A. Aljundi, Membrane fouling and modification using surface treatment and layer-by-layer assembly of polyelectrolytes: State-of-the-art review, J. Water Process Eng., 11 (2016) 68–87.
  11. Y.N. Yip, A. Tiraferri, W.A. Phillip, J.D. Schiffman, M. Elimelech, High performance thin-film composite forward osmosis membrane, Environ. Sci. Technol., 44 (2010) 3812–3818.
  12. L. Ouyang, R. Malaisamy, M.I. Bruening, Multilayer polyelectrolyte films as nanofiltration membranes for separating monovalent and divalent cations, J. Membr. Sci., 310 (2008) 76–84.
  13. T. Ishigami, K. Amano, A. Fujii, Y. Ohmukani, E. Kamio, T. Maruyama, M. Hideto, Fouling reduction of reverse osmosis membrane by surface modification via layer-by-layer assembly, Sep. Purif. Technol., 99 (2012) 1–7.
  14. M. Michel, D. Vautier, J.-C. Voegel, P. Schaaf, V. Ball, Layer-by-layer self-assembled polyelectrolyte multilayers with embedded phospholipid vesicles, Langmuir, 20 (2004) 4835–4839.
  15. G. Decher, J.D. Hong, J. Schmitt, Builup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces, Thin Solids Films, 210 (1992) 831–835.
  16. M. Schonhoff, Layered polyelectrolyte complexes: physics of formation and molecular properties, J. Phys. Condens. Matter, 15 (2003) 1781–1808.
  17. M. Elizbieciak, M. Kolasinska, P. Warszynski, Characteristics of polyelectrolyte multilayers: the effect of polyion charge on thickness and wetting properties, J. Colloids Surfaces A: Physicochem. Eng. Aspects, 321 (2008) 258–261.
  18. M. Castelnovo, J.-F. Joanny, Formation of polyelectrolyte multilayers, Langmuir, 16 (2000) 7524–7532.
  19. S. Schwartz, J. Nigel, A. Janke, W. Jaeger, S. Pratskaya, Adsorption of polyelectrolytes with hydrophobic parts, Prog. Colloid Polym. Sci., 132 (2006) 102–109.
  20. X. Tuo, D. Chen, H. Cheng, X. Wang, Fabricating waterinsoluble polyelectrolytes into multilayers with layer-by-layer self-assembly, Polym. Bull., 54 (2005) 427–433.
  21. A. Tiraferri, P. Maroni, M. Borkovec, Adsorption of polyelectrolytes to like-charged substrates induced by multivalent counterions as exemplified by poly(styrene sulfonate) and silica, Phys. Chem. Phys., 17 (2015) 10348–10352.
  22. R. Messina, Adsorption of oppositely charged polyelectrolytes onto a charged rod, J. Chem. Phys., 119 (2003) 8133–8139.
  23. S. Qi, C.Q. Qui, Y. Zhao, C.Y. Tang, Double-skinned forward osmosis membranes based on layer-by-layer assembly FO performance and fouling behavior, J. Membr. Sci., 405–406 (2012) 20–29.
  24. J. Su, T.-S. Chung, B.J. Helmer, J.S. de Wit, Enhanced doubleskinned FO membrane with inner dense layer for wastewater treatment and macromolecules recycle using sucrose as draw solute, J. Membr. Sci., 396 (2012) 92–100.
  25. Y. Shin, J.E. Robets, M.M. Santore, The relationship between polymer/substrate charge density and charge overcompensation by adsorbed polyelectrolyte layers, J. Colloid Interface Sci., 247 (2002) 220–230.
  26. O.J. Rojas, M. Ernstsson, R.D. Neuman, P.M. Claesson, Effect of polyelectrolyte charge density on the adsorption and desorption behavior on mica, Langmuir, 18 (2002) 1604–1612.
  27. X. Lui, S. Qi, Y. Li, L. Yang, B. Cao, C.Y. Tang, Synthesis and characterization of novel antibacterial silver nanocomposite nanofiltration and forward osmosis membranes based on layerby- layer assembly, Water Res., 47 (2013) 3081–3092.
  28. Q. Saren, C.Q. Qui, C.Y. Tang, Synthesis and characterization of Novel forward osmosis membranes based on layer-by-layer assembly, J. Environ. Sci. Technol., 45 (2011) 5201–5208.
  29. M. Hu, B. Mi, Layer-by-layer assembly of graphene oxide membranes via electrostatic interactions, J. Membr. Sci., 469 (2014) 80–87.
  30. Y. Kang, L. Emdadi, M.J. Lee, D. Lui, B. Mi, Layer-bylayer Assembly of zeolite/polyelectrolyte nano-composite membranes with high zeolite loading, J. Environ. Sci. Technol. Lett., 1 (2014) 504–509.
  31. P. Karmer, D.J. Johnson, E. Seker, N. Hilal, S.A. Altinkaya, Layer-by-layer surface modification of polyethersulfone membranes using polyelectrolytes and AgCl/TiO2 xerogels, J. Membr. Sci., 493 (2015) 807–819.
  32. W. Choi, J. Choi, J. Bang, J.-H. Lee, Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications, Appl. Mater. Interfaces, 5 (2013) 12510–12519.
  33. S. IIyas, J. De Grooth, K. Nijmeijer, W.M. de Mos, Multifunctional and polyelectrolyte multilayers as nanofiltration membranes and as sacrificial layers for easy membrane cleaning, J. Colloid Interface Sci., 446 (2015) 386–393.
  34. G. Zhang, H. Yan, S. Ji, Z. Lui, Self-assembly of polyelectrolyte multilayer pervaporation membranes by a dynamic layer-bylayer technique on a hydrolyzed polyacrylonitrile ultrafiltration membrane, J. Membr. Sci., 292 (2007) 1–8.
  35. G.-R. Xu, S.-H. Wang, H.-L. Zhao, S.-B. Wu, J.-M. Xu, L. Li, X.-Y. Liu, Layer-by-layer (LBL) assembly technology as promising strategy for tailoring pressure-driven desalination membranes, J. Membr. Sci., 493 (2013) 428–443.
  36. S. Qi, W. Li, Y. Zhao, N. Ma, J. Wei, T.W. Chin, C.Y. Tang, Influence of the properties of layer-by-layer active layers on forward osmosis performance, J. Membr. Sci., 423–424 (2012) 536–542.
  37. C.J. van Oss, Development and applications of the interfacial tension between water and organic or biological surfaces, J. Colloids Surf., B, 54 (2007) 2–9.
  38. C.J. van Oss, Acid-base interfacial interactions in aqueousmedia, J. Colloids Surf., A, 78 (1993) 1–49.
  39. G. Wolansky, A. Marmur, Apparent contact angles on rough surfaces: the Wenzel equation revisited, J. Colloids Surf., A, 156 (1999) 381–388.
  40. J.A. Brant, A.E. Childress, Assessing short-range membranecolloid interactions using surface energetics, J. Membr. Sci., 203 (2002) 257–273.
  41. Q. Chen, P. Yu, W. Huang, S. Yu, M. Liu, C. Gao, High-flux composite hollow fibre nanofiltration membranes fabricated through layer-by-layer deposition of oppositely charged cross-linked polyelectrolytes for dye removal, J. Membr. Sci., 492 (2015) 312–321.
  42. T. Radeva, V. Milkova, I. Petkanchin, Structure and electrical properties of polyelectrolytes multilayers formed on anisometric colloidal particles, J. Colloid Interface Sci., 244 (2001) 24–30.
  43. M.M. Motsa, B.B. Mamba, A. D’Haese, E.M.V. Hoek, A.R.D. Verliefde, Organic fouling of forward osmosis membranes: the role of feed solution chemistry and membrane structural properties, J. Membr. Sci., 460 (2014) 99–109.
  44. A.J. Schafer, A.G. Fane, Nanofiltration – Principles and Applications, Elsevier, New York, 2005, Chapter 4.
  45. L.Y. Ng, A.W. Mohammad, C.Y. Ng, C.P. Leo, R.L. Rohani, Development of nanofiltration membrane with high salt selectivity and performance stability using polyelectrolyte multilayers, Desalination, 351 (2014) 19–26.
  46. J.-Y. Lee, S. Qi, X. Lui, L. Ye, F. Hao, C.Y. Tang, Synthesis and characterization of silica gel polyacylonitrile mixed matrix forward osmosis membranes based on layer-by-layer assembly, Sep. Purif. Technol., 124 (2014) 207–216.
  47. S. Rajabzadeh, C. Lui, L. Shi, R. Wang, Preparation of lowpressure water softening hollow fibre membranes by electrolyte deposition with two bilayers, Desalination, 344 (2014) 64–70.
  48. B. Deng, J. Yin, Polymer-matrix nanocomposite membranes for water treatment, J. Membr. Sci., 479 (2015) 256–275.
  49. C. Liu, L. Shi, R. Wang, Crosslinked layer-by-layer polyelectrolyte nanofiltration hollow fibre membrane for lowpressure water softening with the presence of SO42– in feed water, J. Membr. Sci., 486 (2015) 169–176.
  50. J.V. Nicolini, C.P. Borges, H.C. Ferraz, Selective rejection of ions and correlation with surface properties of nanofiltration membranes, Sep. Purif. Technol., 171 (2016)238–247.
  51. O. Labban, C. Liu, T.H. Chong, J.H. Lienhard, Fundamentals of low-pressure nanofiltration: membrane characterization, modeling, and understanding the multi-ions interactions in water softening, J. Membr. Sci., 521 (2017) 18–32.
  52. P.-Y. Pontalier, A. Ismail, M. Ghoul, Mechanisms for the selective rejection of solutes in nanofiltration membranes, Sep. Purif. Technol., 12 (1997) 175–181.