References
- R. Aguilera, S. Sabater, R. Marcé, A methodological framework
for characterizing the spatiotemporal variability of river waterquality
patterns using dynamic factor analysis, J. Environ. Inf.,
31 (2017) 97–110.
- L. Yang, K. Mei, X. Liu, L. Wu, M. Zhang, J. Xu, F. Wang, Spatial
distribution and source apportionment of water pollution in
different administrative zones of Wen-Rui-Tang (WRT) river
watershed, China, Environ. Sci. Pollut. Res., 20 (2013) 5341–5352.
- V. Varekar, S. Karmakar, R. Jha, Seasonal rationalization of
river water quality sampling locations: a comparative study of
the modified Sanders and multivariate statistical approaches,
Environ. Sci. Pollut. Res., 23 (2016) 2308–2328.
- R. Hatami, Development of a protocol for environmental impact
studies using causal modelling, Water Res., 138 (2018) 206–223.
- Y. Fan, J. Chen, G. Shirkey, R. John, S.R. Wu, H. Park,
C. Shao, Applications of structural equation modeling (SEM) in
ecological studies: an updated review, Ecol. Process, 5 (2016) 19.
- I. Alameddine, M.A. Kenney, R.J. Gosnell, K.H. Reckhow, Robust
multivariate outlier detection methods for environmental data,
J. Environ. Eng., 136 (2010) 1299–1304.
- G.D. Betrie, R. Sadiq, S. Tesfamariam, K.A. Morin, On the issue
of incomplete and missing water-quality data in mine site
databases: comparing three imputation methods, Mine Water
Environ., 35 (2016) 3–9.
- J. He, Mixture model based multivariate statistical analysis of
multiply censored environmental data, Adv. Water Resour.,
59 (2013) 15–24.
- A. Marinović Ruždjak, D. Ruždjak, Evaluation of river water
quality variations using multivariate statistical techniques,
Environ. Monit. Assess., 187 (2015) 215.
- S.J. Ki, J.-H. Kang, S.W. Lee, Y.S. Lee, K.H. Cho, K.-G. An, J.H. Kim,
Advancing assessment and design of stormwater monitoring
programs using a self-organizing map: characterization of trace
metal concentration profiles in stormwater runoff, Water Res.,
45 (2011) 4183–4197.
- Y.-S. Park, J. Tison, S. Lek, J.-L. Giraudel, M. Coste, F. Delmas,
Application of a self-organizing map to select representative
species in multivariate analysis: a case study determining
diatom distribution patterns across France, Ecol. Inf., 1 (2006)
247–257.
- L. Tudesque, M. Gevrey, G. Grenouillet, S. Lek, Long-term
changes in water physicochemistry in the Adour-Garonne
hydrographic network during the last three decades, Water
Res., 42 (2008) 732–742.
- G. Loganathan, S. Krishnaraj, J. Muthumanickam, K. Ravichandran,
Chemometric and trend analysis of water quality of
the South Chennai lakes: an integrated environmental study, J.
Chemom., 29 (2015) 59–68.
- T.T. Nguyen, A. Kawamura, T.N. Tong, N. Nakagawa, H. Amaguchi,
R. Gilbuena, Clustering spatio–seasonal hydrogeochemical
data using self-organizing maps for groundwater quality
assessment in the Red River Delta, Vietnam, J. Hydrol., 522 (2015)
661–673.
- A. Astel, S. Tsakouski, P. Barbieri, V. Simeonov, Comparison of
self-organizing maps classification approach with cluster and
principal components analysis for large environmental data
sets, Water Res., 41 (2007) 4566–4578.
- R. Chea, G. Grenouillet, S. Lek, Evidence of water quality
degradation in lower mekong basin revealed by self-organizing
map, PLoS ONE, 11 (2016) e0145527.
- C. Lennard, G. Hegerl, Relating changes in synoptic circulation
to the surface rainfall response using self-organising maps,
Clim. Dyn., 44 (2015) 861–879.
- W.-P. Tsai, S.-P. Huang, S.-T. Cheng, K.-T. Shao, F.-J. Chang,
A data-mining framework for exploring the multi-relation
between fish species and water quality through self-organizing
map, Sci. Total Environ., 579 (2017) 474–483.
- Yeongsan River Environment Research Center (YRERC), The
Second Final Report on Water Quality Monitoring on Tributaries
in the Yeongsan River Basin, Korea, YRERC, National Institute
of Environmental Research, Gwangju, Republic of Korea, 2014.
- S.J. Ki, S. Song, T.W. Kang, S. Kim, T. Kang, S.G. Baek, J.H. Baek,
J.H. Kim, Addressing water pollution hotspots in the tributary
monitoring network using a non-linear data analysis tool,
Desal. Wat. Treat., 77 (2017) 156–162.