References

  1. R. Aguilera, S. Sabater, R. Marcé, A methodological framework for characterizing the spatiotemporal variability of river waterquality patterns using dynamic factor analysis, J. Environ. Inf., 31 (2017) 97–110.
  2. L. Yang, K. Mei, X. Liu, L. Wu, M. Zhang, J. Xu, F. Wang, Spatial distribution and source apportionment of water pollution in different administrative zones of Wen-Rui-Tang (WRT) river watershed, China, Environ. Sci. Pollut. Res., 20 (2013) 5341–5352.
  3. V. Varekar, S. Karmakar, R. Jha, Seasonal rationalization of river water quality sampling locations: a comparative study of the modified Sanders and multivariate statistical approaches, Environ. Sci. Pollut. Res., 23 (2016) 2308–2328.
  4. R. Hatami, Development of a protocol for environmental impact studies using causal modelling, Water Res., 138 (2018) 206–223.
  5. Y. Fan, J. Chen, G. Shirkey, R. John, S.R. Wu, H. Park, C. Shao, Applications of structural equation modeling (SEM) in ecological studies: an updated review, Ecol. Process, 5 (2016) 19.
  6. I. Alameddine, M.A. Kenney, R.J. Gosnell, K.H. Reckhow, Robust multivariate outlier detection methods for environmental data, J. Environ. Eng., 136 (2010) 1299–1304.
  7. G.D. Betrie, R. Sadiq, S. Tesfamariam, K.A. Morin, On the issue of incomplete and missing water-quality data in mine site databases: comparing three imputation methods, Mine Water Environ., 35 (2016) 3–9.
  8. J. He, Mixture model based multivariate statistical analysis of multiply censored environmental data, Adv. Water Resour., 59 (2013) 15–24.
  9. A. Marinović Ruždjak, D. Ruždjak, Evaluation of river water quality variations using multivariate statistical techniques, Environ. Monit. Assess., 187 (2015) 215.
  10. S.J. Ki, J.-H. Kang, S.W. Lee, Y.S. Lee, K.H. Cho, K.-G. An, J.H. Kim, Advancing assessment and design of stormwater monitoring programs using a self-organizing map: characterization of trace metal concentration profiles in stormwater runoff, Water Res., 45 (2011) 4183–4197.
  11. Y.-S. Park, J. Tison, S. Lek, J.-L. Giraudel, M. Coste, F. Delmas, Application of a self-organizing map to select representative species in multivariate analysis: a case study determining diatom distribution patterns across France, Ecol. Inf., 1 (2006) 247–257.
  12. L. Tudesque, M. Gevrey, G. Grenouillet, S. Lek, Long-term changes in water physicochemistry in the Adour-Garonne hydrographic network during the last three decades, Water Res., 42 (2008) 732–742.
  13. G. Loganathan, S. Krishnaraj, J. Muthumanickam, K. Ravichandran, Chemometric and trend analysis of water quality of the South Chennai lakes: an integrated environmental study, J. Chemom., 29 (2015) 59–68.
  14. T.T. Nguyen, A. Kawamura, T.N. Tong, N. Nakagawa, H. Amaguchi, R. Gilbuena, Clustering spatio–seasonal hydrogeochemical data using self-organizing maps for groundwater quality assessment in the Red River Delta, Vietnam, J. Hydrol., 522 (2015) 661–673.
  15. A. Astel, S. Tsakouski, P. Barbieri, V. Simeonov, Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets, Water Res., 41 (2007) 4566–4578.
  16. R. Chea, G. Grenouillet, S. Lek, Evidence of water quality degradation in lower mekong basin revealed by self-organizing map, PLoS ONE, 11 (2016) e0145527.
  17. C. Lennard, G. Hegerl, Relating changes in synoptic circulation to the surface rainfall response using self-organising maps, Clim. Dyn., 44 (2015) 861–879.
  18. W.-P. Tsai, S.-P. Huang, S.-T. Cheng, K.-T. Shao, F.-J. Chang, A data-mining framework for exploring the multi-relation between fish species and water quality through self-organizing map, Sci. Total Environ., 579 (2017) 474–483.
  19. Yeongsan River Environment Research Center (YRERC), The Second Final Report on Water Quality Monitoring on Tributaries in the Yeongsan River Basin, Korea, YRERC, National Institute of Environmental Research, Gwangju, Republic of Korea, 2014.
  20. S.J. Ki, S. Song, T.W. Kang, S. Kim, T. Kang, S.G. Baek, J.H. Baek, J.H. Kim, Addressing water pollution hotspots in the tributary monitoring network using a non-linear data analysis tool, Desal. Wat. Treat., 77 (2017) 156–162.