References
- M.A. Monfared, N. Kasiri, T. Mohammadi, A CFD model for
prediction of critical electric potential preventing membrane
fouling in oily waste water treatment, J. Membr. Sci., 539 (2017)
320–328.
- E. Drioli, G. Di Profio, E. Curcio, Membrane-Assisted
Crystallization Technology, World Scientific, Singapore, 2015.
- Z. Ze, J. Sx, Hollow fiber membrane contactor absorption of
CO2 from the flue gas: review and perspective, Glob. Nest J.,
16 (2014) 355–374.
- K. He, S. Chen, C. Huang, L. Zhang, Fluid flow and mass
transfer in an industrial-scale hollow fiber membrane contactor
scaled up with small elements, Int. J. Heat Mass Tran., 127 (2018)
289–301.
- M. Wang, S. Mondal, I.M. Griffiths, The role of fouling in
optimizing direct-flow filtration module design, Chem. Eng.
Sci., 163 (2017) 215–222.
- L. Zhuang, H. Guo, P. Wang, G. Dai, Study on the flux
distribution in a dead-end outside-in hollow fiber membrane
module, J. Membr. Sci., 495 (2015) 372–383.
- J. Günther, D. Hobbs, C. Albasi, C. Lafforgue, A. Cockx,
P. Schmitz, Modeling the effect of packing density on filtration
performances in hollow fiber microfiltration module: a spatial
study of cake growth, J. Membr. Sci., 389 (2012) 126–136.
- I. Noda, D.G. Brown-West, C.C. Gryte, Effect of flow
maldistribution on hollow fiber dialysis — experimental studies,
J. Membr. Sci., 5 (1979) 209–225.
- J.C. Kim, J.H. Kim, J. Sung, H. Kim, E. Kang, S.H. Lee, J.K. Kim,
H.C. Kim, B.G. Min, C. Ronco, Effects of arterial port design
on blood flow distribution in hemodialyzers, Blood Purif.,
28 (2009) 260–267.
- A. Frank, G.G. Lipscomb, M. Dennis, Visualization of concentration
fields in hemodialyzers by computed tomography,
J. Membr. Sci., 175 (2000) 239–251.
- Y. Wang, F. Chen, Y. Wang, G. Luo, Y. Dai, Effect of random
packing on shell-side flow and mass transfer in hollow fiber
module described by normal distribution function, J. Membr.
Sci., 216 (2003) 81–93.
- V. Chen, M. Hlavacek, Application of Voronoi tessellation for
modeling randomly packed hollow-fiber bundles, AIChE J.,
40 (1994) 606–612.
- J.D. Rogers, R.L. Long Jr., Modeling hollow fiber membrane
contactors using film theory, Voronoi tessellations, and facilitation
factors for systems with interface reactions, J. Membr.
Sci., 134 (1997) 1–17.
- J. Wu, V. Chen, Shell-side mass transfer performance of
randomly packed hollow fiber modules, J. Membr. Sci.,
172 (2000) 59–74.
- L. Bao, G.G. Lipscomb, Well-developed mass transfer in axial
flows through randomly packed fiber bundles with constant
wall flux, Chem. Eng. Sci., 57 (2002) 125–132.
- L. Bao, G. Glenn Lipscomb, Mass transfer in axial flows
through randomly packed fiber bundles with constant wall
concentration, J. Membr. Sci., 204 (2002) 207–220.
- W. Ding, D. Gao, Z. Wang, L. He, Theoretical estimation of shellside
mass transfer coefficient in randomly packed hollow fiber
modules with polydisperse hollow fiber outer radii, J. Membr.
Sci., 284 (2006) 95–101.
- L. Zhang, Heat and mass transfer in a randomly packed hollow
fiber membrane module: a fractal model approach, Int. J. Heat
Mass Tran., 54 (2011) 2921–2931.
- J. Zheng, Y. Xu, Z. Xu, Flow distribution in a randomly packed
hollow fiber membrane module, J. Membr. Sci., 211 (2003)
263–269.
- J. Zheng, Z. Xu, J. Li, S. Wang, Y. Xu, Influence of random
arrangement of hollow fiber membranes on shell side mass
transfer performance: a novel model prediction, J. Membr. Sci.,
236 (2004) 145–151.
- J. Happel, Viscous flow relative to arrays of cylinders, AIChE J.,
5 (1959) 174–177.
- M. Kostoglou, A.J. Karabelas, On the structure of the singlephase
flow field in hollow fiber membrane modules during
filtration, J. Membr. Sci., 322 (2008) 128–138.
- S. Buetehorn, D. Volmering, K. Vossenkaul, T. Wintgens,
M. Wessling, T. Melin, CFD simulation of single-and multiphase
flows through submerged membrane units with irregular
fiber arrangement, J. Membr. Sci., 384 (2011) 184–197.
- W. Li, J. Liu, L. He, J. Liu, S. Sun, Z. Huang, X. Liang, D.
Gao, W. Ding, Simulation and experimental study on the
effect of channeling flows on the transport of toxins in
hemodialyzers, J. Membr. Sci., 501 (2016) 123–133.
- H. Chen, C. Cao, L. Xu, T. Xiao, G. Jiang, Experimental velocity
measurements and effect of flow maldistribution on predicted
permeator performances, J. Membr. Sci., 139 (1998) 259–268.
- J. Lemanski, G.G. Lipscomb, Effect of shell‐side flows on
hollow‐fiber membrane device performance, AIChE J., 41 (1995)
2322–2326.
- L. Bao, B. Liu, G.G. Lipscomb, Entry mass transfer in axial flows
through randomly packed fiber bundles, AIChE J., 45 (1999)
2346–2356.
- J. Lemanski, G.G. Lipscomb, Effect of shell-side flows on the
performance of hollow-fiber gas separation modules, J. Membr.
Sci., 195 (2002) 215–228.
- L. Bao, G.G. Lipscomb, Effect of random fiber packing on the
performance of shell-fed hollow-fiber gas separation modules,
Desalination, 146 (2002) 243–248.
- P. Keshavarz, S. Ayatollahi, J. Fathikalajahi, Mathematical
modeling of gas–liquid membrane contactors using random
distribution of fibers, J. Membr. Sci., 325 (2008) 98–108.
- S. Chang, A.G. Fane, T.D. Waite, A. Yeo, Unstable filtration
behavior with submerged hollow fiber membranes, J. Membr.
Sci., 308 (2008) 107–114.
- S. Huang, M. Yang, S. Chen, Effects of the random distributions
on the longitudinal transport phenomena between an elliptical
hollow fiber membrane bundle, J. Membr. Sci., 471 (2014)
362–371.
- L. Zhuang, G. Dai, Z. Xu, Three‐dimensional simulation of the
time‐dependent fluid flow and fouling behavior in an industrial
hollow fiber membrane module, AIChE J., 64 (2018) 2655–2669.
- L. Zhuang, H. Guo, G. Dai, Z. Xu, Effect of the inlet manifold
on the performance of a hollow fiber membrane module -A CFD
study, J. Membr. Sci., 526 (2017) 73–93.
- J. Günther, P. Schmitz, C. Albasi, C. Lafforgue, A numerical
approach to study the impact of packing density on fluid flow
distribution in hollow fiber module, J. Membr. Sci., 348 (2010)
277–286.
- X. Li, J. Li, Z. Cui, Y. Yao, Modeling of filtration characteristics
during submerged hollow fiber membrane microfiltration of
yeast suspension under aeration condition, J. Membr. Sci., 510
(2016) 455–465.
- W. Ding, L. He, G. Zhao, X. Luo, M. Zhou, D. Gao, Effect of
distribution tabs on mass transfer of artificial kidney, AIChE J.,
50 (2004) 786–790.
- H.I. Mahon, Permeability Separatory Apparatus and Process
Utilizing Hollow Fibers, US Patents 3,228,877, 1966.
- P.J. Roache, P.M. Knupp, Completed Richardson Extrapolation,
Commun. Numer. Methods Eng., 9 (1993) 365–374.
- K.B. Lim, P.C. Wang, H. An, S.C.M. Yu, Computational studies
for the design parameters of Hollow Fibre Membrane Modules,
J. Membr. Sci., 529 (2017) 263–273.
- FLUENT User’s Guide, Fluent Inc., 2006.
- B. Tansel, W.Y. Bao, I.N. Tansel, Characterization of fouling
kinetics in ultrafiltration systems by resistances in series model,
Desalination, 129 (2000) 7–14.
- C. Serra, M.J. Clifton, P. Moulin, J. Rouch, P. Aptel, Dead-end
ultrafiltration in hollow fiber modules: module design and
process simulation, J. Membr. Sci., 145 (1998) 159–172.
- L. Zhuang, G. Dai, Numerical simulation of dynamic process
during outside-in dead-end filtration in hollow fiber membrane
module, CIESC J., 67 (2016) 2841–2850.
- J. Wang, X. Gao, G. Ji, X. Gu, CFD simulation of hollow fiber
supported NaA zeolite membrane modules, Sep. Purif. Technol.,
213 (2019) 1–10.
- D. Kim, M. Kwak, K. Kim, Y.K. Chang, Turbulent jet-assisted
microfiltration for energy efficient harvesting of microalgae,
J. Membr. Sci., 575 (2019) 170–178.
- Z. Li, L. Zhang, Flow maldistribution and performance
deteriorations in a counter flow hollow fiber membrane module
for air humidification/dehumidification, Int. J. Heat Mass Tran.,
74 (2014) 421–430.
- X. Li, J. Li, J. Wang, H. Wang, B. He, H. Zhang, W. Guo,
H.H. Ngo, Experimental investigation of local flux distribution
and fouling behavior in double-end and dead-end submerged
hollow fiber membrane modules, J. Membr. Sci., 453 (2014)
18–26.
- M. Lee, J. Kim, Analysis of local fouling in a pilot-scale
submerged hollow-fiber membrane system for drinking water
treatment by membrane autopsy, Sep. Purif. Technol., 95 (2012)
227–234.