References

  1. G. Hu, J. Cao, Metal-containing nanoparticles derived from concealed metal deposits: an important source of toxic nanoparticles in aquatic environments, Chemosphere, 224 (2019) 726.
  2. M.C. Reiley, Science, policy, and trends of metals risk assessment at EPA: how understanding metals bioavailability has changed metals risk assessment at US EPA, Aquat. Toxicol., 84 (2007) 292.
  3. J. Kujawa, S. Cerneaux, W. Kujawski, Investigation of the stability of metal oxide powders and ceramic membranes grafted by perfluoroalkylsilanes, Colloids Surf., A, 443 (2014) 109.
  4. T. Wu, N. Wang, J. Li, L. Wang, W. Zhang, G. Zhang, S. Ji, Tubular thermal crosslinked-PEBA/ceramic membrane for aromatic/aliphatic pervaporation, J. Membr. Sci., 486 (2015) 1–9.
  5. A. Elgamouz, N. Tijani, From a naturally occurring material (clay mineral) to the production of porous ceramic membranes, Microporous Mesoporous Mater., 271 (2018) 52–58.
  6. A. Elgamouz, N. Tijani, Dataset in the production of composite clay-zeolite membranes made from naturally occurring clay minerals, Data Brief, 19 (2018) 2267.
  7. M. Huang, J. Pan, L. Zheng, Removal of heavy metals from aqueous solutions using bacteria, J. Shanghai Univ. (English Ed.), 5 (2001) 253.
  8. J. Koelmel, M. Prasad, G. Velvizhi, S.K. Butti, S.V. Mohan, In: M.N.V. Parasad Kaimin Shih, Ed., Metalliferous Waste in India and Knowledge Explosion in Metal Recovery Techniques and Processes for the Prevention of Pollution, Environmental Materials and Waste, Elsevier, London, 2016, pp. 339–390.
  9. H. Rabiee, K.R. Khalilpour, J.M. Betts, N. Tapper, in: K.R. Khalilpour, Ed., Energy Water Nexus: Renewable- Integrated Hybridized Desalination Systems, Polygeneration with Polystorage for Chemical and Energy Hubs, Elsevier, London, 2019, pp. 409–458.
  10. S. Kempton, R.M. Sterritt, J.N. Lester, Heavy metal removal in primary sedimentation I. The influence of metal solubility, Sci. Total Environ., 63 (1987) 231.
  11. T. Hou, H. Du, Z. Yang, Z. Tian, S. Shen, Y. Shi, W. Yang, L. Zhang, Flocculation of different types of combined contaminants of antibiotics and heavy metals by thermo-responsive flocculants with various architectures, Sep. Purif. Technol., 223 (2019) 123–132.
  12. Y. Xu, C. Zhang, P. Lu, X. Zhang, L. Zhang, J. Shi, Overcoming poisoning effects of heavy metal ions against photocatalysis for synergetic photo-hydrogen generation from wastewater, Nano Energy, 38 (2017) 494.
  13. A. Chougui, K. Zaiter, A. Belouatek, B. Asli, Heavy metals and color retention by a synthesized inorganic membrane, Arab. J. Chem., 7 (2014) 817.
  14. N. Abdullah, N. Yusof, W.J. Lau, J. Jaafar, A.F. Ismail, Recent trends of heavy metal removal from water/wastewater by membrane technologies, J. Ind. Eng. Chem., 76 (2019) 17.
  15. A. Jona, Characterization of pore structure of filter media, Fluid Part. Sep. J., 14 (2002) 227.
  16. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.-W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc., 114 (1992) 10834.
  17. R.S. Dariani, M. Nazari, Comparison of stress, strain, and elastic properties for porous silicon layers supported by substrate and corresponding membranes, J. Mol. Struct., 1119 (2016) 308.
  18. C. Wang, S. Leng, H. Guo, L. Cao, J. Huang, Acid and alkali treatments for regulation of hydrophilicity/hydrophobicity of natural zeolite, Appl. Surf. Sci., 478 (2019) 319.
  19. S. Aguado, A.C. Polo, M.P. Bernal, J. Coronas, J. Santamarı́a, Removal of pollutants from indoor air using zeolite membranes, J. Membr. Sci., 240 (2004) 159.
  20. J. Coronas, J. Santamaria, Separations using zeolite membranes, Sep. Purif. Methods, 28 (1999) 127.
  21. J.D. Ramsay, Characterization of the pore structure of membranes, MRS Bull., 24 (1999) 36.
  22. M.P. Bernal, J. Coronas, M. Menéndez, J. Santamaría, Characterization of zeolite membranes by measurement of permeation fluxes in the presence of adsorbable species, Ind. Eng. Chem. Res., 41 (2002) 5071.
  23. M.A. Ulla, R. Mallada, J. Coronas, L. Gutierrez, E. Miró, J. Santamarıa, Synthesis and characterization of ZSM-5 coatings onto cordierite honeycomb supports, Appl. Catal., A, 253 (2003) 257.
  24. B.T. Holland, L. Abrams, A. Stein, Dual templating of macroporous silicates with zeolitic microporous frameworks, J. Am. Chem. Soc., 121 (1999) 4308.
  25. Z. Li, Z. Ma, van der Kuijp, T. Jan, Z. Yuan, L. Huang, A review of soil heavy metal pollution from mines in China: pollution and health risk assessment, Sci. Total Environ., 468 (2014) 843.
  26. A. El Gamouz, H. Bendifi, M. El Amane, L. Messaoudi, N. Tijani, Physico-chemical characterisation of a clay rock from MeknesTafilalet region, Phys. Chem. News, 34 (2007) 120.
  27. Y.P. de Peña, W. Rondón, Linde type a zeolite and type Y Faujasite as a solid-phase for lead, cadmium, nickel and cobalt preconcentration and determination using a flow injection system coupled to flame atomic absorption spectrometry, Am. J. Anal. Chem., 4 (2013) 387.
  28. Y. Raharjo, A.F. Ismail, M.H.D. Othman, Malek, N.A.N. Nik, D. Santoso, Preparation and characterization of imprinted zeolite-Y for p-cresol removal in haemodialysis, Mater. Sci. Eng., C, 103 (2019) 109722.
  29. M. Arruebo, J. Coronas, M. Menendez, J. Santamarıa, Separation of hydrocarbons from natural gas using silicalite membranes, Sep. Purif. Technol., 25 (2001) 275.
  30. E. Mateo, M. Menendez, J. Coronas, N. Tijani, H. Ahlafi, L. Messaoudi, A. El Gamouz, M. Ouammou, Preparation and characterization of moroccan clay support for zeolitic membranes, Phys. Chem. News, 44 (2008) 15.
  31. A. Elgamouz, N. Tijani, I. Shehadi, K. Hasan, M. Al-Farooq Kawam, Characterization of the firing behaviour of an illitekaolinite clay mineral and its potential use as membrane support, Heliyon, 5 (2019) e02281.
  32. X. Liu, P. Mäki-Arvela, A. Aho, Z. Vajglova, V. Gun’ko, I. Heinmaa, N. Kumar, K. Eränen, T. Salmi, D.Y. Murzin, Zeta potential of beta zeolites: influence of structure, acidity, pH, temperature and concentration, Molecules, 23 (2018) 946.
  33. I. Persson, Hydrated metal ions in aqueous solution: how regular are their structures?, Pure Appl. Chem., 82 (2010) 1901.
  34. D. Qadir, H.B. Mukhtar, L.K. Keong, Rejection of divalent ions in commercial tubular membranes: effect of feed concentration and anion type, Sustainable Environ. Res., 27 (2017) 103.
  35. Z.V.P. Murthy, L.B. Chaudhari, Separation of binary heavy metals from aqueous solutions by nanofiltration and characterization of the membrane using Spiegler–Kedem model, Chem. Eng. J., 150 (2009) 181.
  36. C. Gherasim, P. Mikulášek, Influence of operating variables on the removal of heavy metal ions from aqueous solutions by nanofiltration, Desalination, 343 (2014) 67.
  37. C. Gherasim, J. Cuhorka, P. Mikulášek, Analysis of lead(II) retention from single salt and binary aqueous solutions by a polyamide nanofiltration membrane: experimental results and modelling, J. Membr. Sci., 436 (2013) 132.
  38. A. Langella, M. Pansini, P. Cappelletti, B. de Gennaro, M. de’Gennaro, C. Colella, NH4+, Cu2+, Zn2+, Cd2+ and Pb2+ exchange for Na+ in a sedimentary clinoptilolite, North Sardinia, Italy, Microporous Mesoporous Mater., 37 (2000) 337.
  39. S. Bouranene, P. Fievet, A. Szymczyk, M. El-Hadi Samar, A. Vidonne, Influence of operating conditions on the rejection of cobalt and lead ions in aqueous solutions by a nanofiltration polyamide membrane, J. Membr. Sci., 325 (2008) 150.
  40. C. Gherasim, J. Cuhorka, P. Mikulášek, Analysis of lead (II) retention from single salt and binary aqueous solutions by a polyamide nanofiltration membrane: experimental results and modelling, J. Membr. Sci., 436 (2013) 132.
  41. G. Zeng, Y. He, Y. Zhan, L. Zhang, Y. Pan, C. Zhang, Z. Yu, Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal, J. Hazard. Mater., 317 (2016) 60.
  42. S.S. Hosseini, A. Nazif, M.A.A. Shahmirzadi, I. Ortiz, Fabrication, tuning and optimization of poly (acrilonitryle) nanofiltration membranes for effective nickel and chromium removal from electroplating wastewater, Sep. Purif. Technol., 187 (2017) 46.
  43. J. Gao, S. Sun, W. Zhu, T. Chung, Chelating polymer modified P84 nanofiltration (NF) hollow fiber membranes for high efficient heavy metal removal, Water Res., 63 (2014) 252.
  44. M.A. Barakat, New trends in removing heavy metals from industrial wastewater, Arab. J. Chem., 4 (2011) 361.