References
- P. Munnik, P.E. De Jongh, K.P. De Jong, Control and impact of
the nanoscale distribution of supported cobalt particles used
in Fischer–Tropsch catalysis, J. Am. Chem. Soc., 136 (2014)
7333–7340.
- G.Z. Kyzas, E.A. Deliyanni, K.A. Matis, Activated carbons
produced by pyrolysis of waste potato peels: cobalt ions
removal by adsorption, Colloids Surf., A, 490 (2016) 74–83.
- X. Li, Z. Lei, J. Qu, Z. Li, Q. Zhang, Separation of copper from
cobalt in sulphate solutions by using CaCO3, Sep. Sci. Technol.,
51 (2016) 2772–2779.
- A. Rahmaninia, Y. Mansoori, F. Nasiri, Surface-initiated atom
transfer radical polymerization of a new rhodanine-based
monomer for rapid magnetic removal of Co (II) ions from
aqueous solutions, Polym. Adv. Technol., 29 (2018) 1988–2001.
- T. Anirudhan, J. Deepa, J. Christa, Nanocellulose/nanobentonite
composite anchored with multi-carboxyl functional groups
as an adsorbent for the effective removal of cobalt (II) from
nuclear industry wastewater samples, J. Colloid Interface Sci.,
467 (2016) 307–320.
- C.A. Kozlowski, W. Walkowiak, Competetive transport of
cobalt-60, strontium-90, and cesium-137 radioisotopes across
polymer inclusion membranes with DNNSA, J. Membr. Sci.,
297 (2007) 181–189.
- F. Fang, L. Kong, J. Huang, S. Wu, K. Zhang, X. Wang, B. Sun,
Z. Jin, J. Wang, X.-J. Huang, Removal of cobalt ions from aqueous
solution by an amination graphene oxide nanocomposite,
J. Hazard. Mater., 270 (2014) 1–10.
- M. Abbas, S. Kaddour, M. Trari, Kinetic and equilibrium studies
of cobalt adsorption on apricot stone activated carbon, J. Ind.
Eng. Chem., 20 (2014) 745–751.
- D. Imessaoudene, S. Hanini, A. Bouzidi, A. Ararem, Kinetic
and thermodynamic study of cobalt adsorption by spent
coffee, Desal. Wat. Treat., 57 (2016) 6116–6123.
- Y. Yıldız, A. Manzak, O. Tutkun, Selective extraction of cobalt
ions through polymer inclusion membrane containing Aliquat
336 as a carrier, Desal. Wat. Treat., 57 (2016) 4616–4623.
- S.S. Foltova, T. Vander Hoogerstraete, D. Banerjee, K. Binnemans,
Samarium/cobalt separation by solvent extraction with
undiluted quaternary ammonium ionic liquids, Sep. Purif.
Technol., 210 (2019) 209–218.
- B. Swain, H.-W. Shim, C.G. Lee, Extraction/separations of cobalt
by supported liquid membrane: a review, Korean Chem. Eng.
Res., 57 (2019) 313–320.
- F. Kubota, R. Kono, W. Yoshida, M. Sharaf, S.D. Kolev, M. Goto,
Recovery of gold ions from discarded mobile phone leachate
by solvent extraction and polymer inclusion membrane (PIM)
based separation using an amic acid extractant, Sep. Purif.
Technol., 214 (2019) 156–161.
- R. Vera, E. Anticó, J.I. Eguiazábal, N. Aranburu, C. Fontàs,
First report on a solvent-free preparation of polymer
inclusion
membranes with an ionic liquid, Molecules, 24 (2019)
1845.
- A. Kaya, C. Onac, H.K. Alpoguz, A. Yilmaz, N. Atar, Removal of
Cr (VI) through calixarene based polymer inclusion membrane
from chrome plating bath water, Chem. Eng. J., 283 (2016)
141–149.
- C.F. Croft, M.I.G. Almeida, R.W. Cattrall, S.D. Kolev, Separation
of lanthanum (III), gadolinium (III) and ytterbium (III) from
sulfuric acid solutions by using a polymer inclusion membrane,
J. Membr. Sci., 545 (2018) 259–265.
- D.A. Fadel, L.A. Shouman, R.M. Afify, Selective transport of
chromium (III), cobalt (II), barium (II) and strontium (II) ions
through polymer inclusion membranes, Desal. Wat. Treat.,
103 (2018) 163–174.
- B. Mahanty, P.K. Mohapatra, D. Raut, D. Das, P. Behere,
M. Afzal, Polymer inclusion membranes containing N, N, N′,
N′-tetra (2-ethylhexyl) diglycolamide: uptake isotherm and
actinide ion transport studies, Ind. Eng. Chem. Res., 54 (2015)
3237–3246.
- M. Vázquez, V. Romero, C. Fontàs, E. Anticó, J. Benavente,
Polymer inclusion membranes (PIMs) with the ionic liquid
(IL) Aliquat 336 as extractant: effect of base polymer and IL
concentration on their physical–chemical and elastic characteristics,
J. Membr. Sci., 455 (2014) 312–319.
- E.R. de San Miguel, J.C. Aguilar, J. de Gyves, Structural effects
on metal ion migration across polymer inclusion membranes:
dependence of transport profiles on nature of active plasticizer,
J. Membr. Sci., 307 (2008) 105–116.
- N. Kavitha, K. Palanivelu, Recovery of copper (II) through
polymer inclusion membrane with di (2-ethylhexyl) phosphoric
acid as carrier from e-waste, J. Membr. Sci., 415 (2012)
663–669.
- N. Benosmane, B. Boutemeur, S.M. Hamdi, M. Hamdi, Removal
of phenol from aqueous solution using polymer inclusion
membrane based on mixture of CTA and CA, Appl. Water Sci.,
8 (2018) 17.
- A. Tor, G. Arslan, H. Muslu, A. Celiktas, Y. Cengeloglu,
M. Ersoz, Facilitated transport of Cr (III) through polymer
inclusion membrane with di (2-ethylhexyl) phosphoric acid
(DEHPA), J. Membr. Sci., 329 (2009) 169–174.
- M. Shirzad, M. Karimi, H. Abolghasemi, Polymer inclusion
membranes with dinonylnaphthalene sulfonic acid as ion
carrier for Co (II) transport from model solutions, Desal. Wat.
Treat., 144 (2019) 185–200.
- A. Kaya, C. Onac, H.K. Alpoğuz, S. Agarwal, V.K. Gupta,
N. Atar, A. Yilmaz, Reduced graphene oxide based a novel
polymer inclusion membrane: transport studies of Cr (VI),
J. Mol. Liq., 219 (2016) 1124–1130.
- S. García, M. Gil, C. Martín, J. Pis, F. Rubiera, C. Pevida,
Breakthrough adsorption study of a commercial activated carbon
for pre-combustion CO2 capture, Chem. Eng. J., 171 (2011)
549–556.
- A. Witek-Krowiak, K. Chojnacka, D. Podstawczyk, A. Dawiec,
K. Pokomeda, Application of response surface methodology
and artificial neural network methods in modelling and
optimization of biosorption process, Bioresour. Technol., 160
(2014) 150–160.
- A. Ahmadi, S. Heidarzadeh, A.R. Mokhtari, E. Darezereshki,
H.A. Harouni, Optimization of heavy metal removal from
aqueous solutions by maghemite (γ-Fe2O3) nanoparticles using
response surface methodology, J. Geochem. Explor., 147 (2014)
151–158.
- S.K. Behera, H. Meena, S. Chakraborty, B. Meikap, Application
of response surface methodology (RSM) for optimization of
leaching parameters for ash reduction from low-grade coal,
Int. J. Min. Sci. Technol., 28 (2018) 621–629.
- M. Karimi, J.A.C. Silva, C.N.d.P. Gonçalves, J.L. Diaz de Tuesta,
A.E. Rodrigues, H.T. Gomes, CO2 capture in chemically and
thermally modified activated carbons using breakthrough
measurements: experimental and modeling study, Ind. Eng.
Chem. Res., 57 (2018) 11154–11166.
- I. Zawierucha, C. Kozlowski, G. Malina, Removal of toxic
metal ions from landfill leachate by complementary sorption
and transport across polymer inclusion membranes, Waste
Manage., 33 (2013) 2129–2136.
- D.W. Green, R.H. Perry, Perry’s Chemical Engineers’ Handbook/
edición Don W. Green y Robert H. Perry, 1973.
- E. Radzyminska-Lenarcik, M. Ulewicz, The use of the steric
effect of the carrier molecule in the polymer inclusion
membranes for the separation of cobalt (II), nickel (II), copper
(II), and zinc (II) ions, Pol. J. Chem. Technol., 17 (2015) 51–56.
- C. Onaç, A. Kaya, H. Alpoğuz, M. Yola, S. Eriskin, N. Atar,
İ. Şener, Recovery of Cr (VI) by using a novel calix
- arene
polymeric membrane with modified graphene quantum dots,
Int. J. Environ. Sci. Technol., 14 (2017) 2423–2434.
- S. Yi, Y. Su, B. Qi, Z. Su, Y. Wan, Application of response
surface methodology and central composite rotatable design in
optimizing the preparation conditions of vinyltriethoxysilane
modified silicalite/polydimethylsiloxane hybrid pervaporation
membranes, Sep. Purif. Technol., 71 (2010) 252–262.
- T. Keskin Gündoğdu, İ. Deniz, G. Çalışkan, E.S. Şahin, N. Azbar,
Experimental design methods for bioengineering applications,
Crit. Rev. Biotechnol., 36 (2016) 368–388.
- M. Ghanbari, A. Hadian, A. Nourbakhsh, K. MacKenzie,
Modeling and optimization of compressive strength and
bulk density of metakaolin-based geopolymer using central
composite design: a numerical and experimental study, Ceram.
Int., 43 (2017) 324–335.
- J. Zolgharnein, A. Shahmoradi, J.B. Ghasemi, Comparative
study of Box–Behnken, central composite, and Doehlert matrix
for multivariate optimization of Pb (II) adsorption onto Robinia
tree leaves, J. Chemom., 27 (2013) 12–20.
- T.Z.E. Lee, C. Krongchai, N.A.L.M.I. Lu, S. Kittiwachana,
S.F. Sim, Application of central composite design for optimization
of the removal of humic substances using coconut
copra, Int. J. Ind. Chem., 6 (2015) 185–191.
- M. Ghaedi, H. Mazaheri, S. Khodadoust, S. Hajati, M. Purkait,
Application of central composite design for simultaneous
removal of methylene blue and Pb2+ ions by walnut wood
activated carbon, Spectrochim. Acta, Part A, 135 (2015) 479–490.
- R.G. Brereton, Chemometrics: Data Analysis for the Laboratory
and Chemical Plant, John Wiley & Sons, 2003.
- M.S. Bhatti, A.S. Reddy, A.K. Thukral, Electrocoagulation
removal of Cr (VI) from simulated wastewater using response
surface methodology, J. Hazard. Mater., 172 (2009) 839–846.
- M. Aliabadi, M. Irani, J. Ismaeili, S. Najafzadeh, Design and
evaluation of chitosan/hydroxyapatite composite nanofiber
membrane for the removal of heavy metal ions from aqueous
solution, J. Taiwan Inst. Chem. Eng., 45 (2014) 518–526.
- P. Sharma, B.K. Bajaj, Production of poly-β-hydroxybutyrate by
Bacillus cereus PS 10 using biphasic-acid-pretreated rice straw,
Int. J. Biol. Macromol., 79 (2015) 704–710.
- R. Mohammadi, M.A. Mohammadifar, A.M. Mortazavian,
M. Rouhi, J.B. Ghasemi, Z. Delshadian, Extraction optimization
of pepsin-soluble collagen from eggshell membrane by response
surface methodology (RSM), Food Chem., 190 (2016) 186–193.
- A. Zainoodin, S.K. Kamarudin, M. Masdar, W.R.W. Daud,
A.B. Mohamad, J. Sahari, Optimization of a porous carbon
nanofiber layer for the membrane electrode assembly in DMFC,
Energy Convers. Manage., 101 (2015) 525–531.
- C. Onac, H.K. Alpoguz, E. Akceylan, M. Yilmaz, Facilitated
transport of Cr (VI) through polymer inclusion membrane
system containing calix
- arene derivative as carrier agent,
J. Macromol. Sci. Part A, 50 (2013) 1013–1021.
- S.D. Kolev, A.M. St John, R.W. Cattrall, Mathematical modeling
of the extraction of uranium (VI) into a polymer inclusion
membrane composed of PVC and di-(2-ethylhexyl) phosphoric
acid, J. Membr. Sci., 425 (2013) 169–175.
- C. Dong, J. Chen, Optimization of process parameters for
anaerobic fermentation of corn stalk based on least squares
support vector machine, Bioresour. Technol., 271 (2019) 174–181.
- X. Meng, Y. Song, Y. Lv, X. Xin, T. Ren, X. Wang, Study on stable
mass transfer and enrichment of phenol by 1-octanol/kerosene/
polyvinyl chloride polymer inclusion membrane, Environ.
Pollut., 253 (2019) 1100–1106.
- C.A. Kozlowski, W. Walkowiak, Removal of chromium (VI)
from aqueous solutions by polymer inclusion membranes,
Water Res., 36 (2002) 4870–4876.