References

  1. P. Munnik, P.E. De Jongh, K.P. De Jong, Control and impact of the nanoscale distribution of supported cobalt particles used in Fischer–Tropsch catalysis, J. Am. Chem. Soc., 136 (2014) 7333–7340.
  2. G.Z. Kyzas, E.A. Deliyanni, K.A. Matis, Activated carbons produced by pyrolysis of waste potato peels: cobalt ions removal by adsorption, Colloids Surf., A, 490 (2016) 74–83.
  3. X. Li, Z. Lei, J. Qu, Z. Li, Q. Zhang, Separation of copper from cobalt in sulphate solutions by using CaCO3, Sep. Sci. Technol., 51 (2016) 2772–2779.
  4. A. Rahmaninia, Y. Mansoori, F. Nasiri, Surface-initiated atom transfer radical polymerization of a new rhodanine-based monomer for rapid magnetic removal of Co (II) ions from aqueous solutions, Polym. Adv. Technol., 29 (2018) 1988–2001.
  5. T. Anirudhan, J. Deepa, J. Christa, Nanocellulose/nanobentonite composite anchored with multi-carboxyl functional groups as an adsorbent for the effective removal of cobalt (II) from nuclear industry wastewater samples, J. Colloid Interface Sci., 467 (2016) 307–320.
  6. C.A. Kozlowski, W. Walkowiak, Competetive transport of cobalt-60, strontium-90, and cesium-137 radioisotopes across polymer inclusion membranes with DNNSA, J. Membr. Sci., 297 (2007) 181–189.
  7. F. Fang, L. Kong, J. Huang, S. Wu, K. Zhang, X. Wang, B. Sun, Z. Jin, J. Wang, X.-J. Huang, Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite, J. Hazard. Mater., 270 (2014) 1–10.
  8. M. Abbas, S. Kaddour, M. Trari, Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon, J. Ind. Eng. Chem., 20 (2014) 745–751.
  9. D. Imessaoudene, S. Hanini, A. Bouzidi, A. Ararem, Kinetic and thermodynamic study of cobalt adsorption by spent coffee, Desal. Wat. Treat., 57 (2016) 6116–6123.
  10. Y. Yıldız, A. Manzak, O. Tutkun, Selective extraction of cobalt ions through polymer inclusion membrane containing Aliquat 336 as a carrier, Desal. Wat. Treat., 57 (2016) 4616–4623.
  11. S.S. Foltova, T. Vander Hoogerstraete, D. Banerjee, K. Binnemans, Samarium/cobalt separation by solvent extraction with undiluted quaternary ammonium ionic liquids, Sep. Purif. Technol., 210 (2019) 209–218.
  12. B. Swain, H.-W. Shim, C.G. Lee, Extraction/separations of cobalt by supported liquid membrane: a review, Korean Chem. Eng. Res., 57 (2019) 313–320.
  13. F. Kubota, R. Kono, W. Yoshida, M. Sharaf, S.D. Kolev, M. Goto, Recovery of gold ions from discarded mobile phone leachate by solvent extraction and polymer inclusion membrane (PIM) based separation using an amic acid extractant, Sep. Purif. Technol., 214 (2019) 156–161.
  14. R. Vera, E. Anticó, J.I. Eguiazábal, N. Aranburu, C. Fontàs, First report on a solvent-free preparation of polymer inclusion membranes with an ionic liquid, Molecules, 24 (2019) 1845.
  15. A. Kaya, C. Onac, H.K. Alpoguz, A. Yilmaz, N. Atar, Removal of Cr (VI) through calixarene based polymer inclusion membrane from chrome plating bath water, Chem. Eng. J., 283 (2016) 141–149.
  16. C.F. Croft, M.I.G. Almeida, R.W. Cattrall, S.D. Kolev, Separation of lanthanum (III), gadolinium (III) and ytterbium (III) from sulfuric acid solutions by using a polymer inclusion membrane, J. Membr. Sci., 545 (2018) 259–265.
  17. D.A. Fadel, L.A. Shouman, R.M. Afify, Selective transport of chromium (III), cobalt (II), barium (II) and strontium (II) ions through polymer inclusion membranes, Desal. Wat. Treat., 103 (2018) 163–174.
  18. B. Mahanty, P.K. Mohapatra, D. Raut, D. Das, P. Behere, M. Afzal, Polymer inclusion membranes containing N, N, N′, N′-tetra (2-ethylhexyl) diglycolamide: uptake isotherm and actinide ion transport studies, Ind. Eng. Chem. Res., 54 (2015) 3237–3246.
  19. M. Vázquez, V. Romero, C. Fontàs, E. Anticó, J. Benavente, Polymer inclusion membranes (PIMs) with the ionic liquid (IL) Aliquat 336 as extractant: effect of base polymer and IL concentration on their physical–chemical and elastic characteristics, J. Membr. Sci., 455 (2014) 312–319.
  20. E.R. de San Miguel, J.C. Aguilar, J. de Gyves, Structural effects on metal ion migration across polymer inclusion membranes: dependence of transport profiles on nature of active plasticizer, J. Membr. Sci., 307 (2008) 105–116.
  21. N. Kavitha, K. Palanivelu, Recovery of copper (II) through polymer inclusion membrane with di (2-ethylhexyl) phosphoric acid as carrier from e-waste, J. Membr. Sci., 415 (2012) 663–669.
  22. N. Benosmane, B. Boutemeur, S.M. Hamdi, M. Hamdi, Removal of phenol from aqueous solution using polymer inclusion membrane based on mixture of CTA and CA, Appl. Water Sci., 8 (2018) 17.
  23. A. Tor, G. Arslan, H. Muslu, A. Celiktas, Y. Cengeloglu, M. Ersoz, Facilitated transport of Cr (III) through polymer inclusion membrane with di (2-ethylhexyl) phosphoric acid (DEHPA), J. Membr. Sci., 329 (2009) 169–174.
  24. M. Shirzad, M. Karimi, H. Abolghasemi, Polymer inclusion membranes with dinonylnaphthalene sulfonic acid as ion carrier for Co (II) transport from model solutions, Desal. Wat. Treat., 144 (2019) 185–200.
  25. A. Kaya, C. Onac, H.K. Alpoğuz, S. Agarwal, V.K. Gupta, N. Atar, A. Yilmaz, Reduced graphene oxide based a novel polymer inclusion membrane: transport studies of Cr (VI), J. Mol. Liq., 219 (2016) 1124–1130.
  26. S. García, M. Gil, C. Martín, J. Pis, F. Rubiera, C. Pevida, Breakthrough adsorption study of a commercial activated carbon for pre-combustion CO2 capture, Chem. Eng. J., 171 (2011) 549–556.
  27. A. Witek-Krowiak, K. Chojnacka, D. Podstawczyk, A. Dawiec, K. Pokomeda, Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process, Bioresour. Technol., 160 (2014) 150–160.
  28. A. Ahmadi, S. Heidarzadeh, A.R. Mokhtari, E. Darezereshki, H.A. Harouni, Optimization of heavy metal removal from aqueous solutions by maghemite (γ-Fe2O3) nanoparticles using response surface methodology, J. Geochem. Explor., 147 (2014) 151–158.
  29. S.K. Behera, H. Meena, S. Chakraborty, B. Meikap, Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal, Int. J. Min. Sci. Technol., 28 (2018) 621–629.
  30. M. Karimi, J.A.C. Silva, C.N.d.P. Gonçalves, J.L. Diaz de Tuesta, A.E. Rodrigues, H.T. Gomes, CO2 capture in chemically and thermally modified activated carbons using breakthrough measurements: experimental and modeling study, Ind. Eng. Chem. Res., 57 (2018) 11154–11166.
  31. I. Zawierucha, C. Kozlowski, G. Malina, Removal of toxic metal ions from landfill leachate by complementary sorption and transport across polymer inclusion membranes, Waste Manage., 33 (2013) 2129–2136.
  32. D.W. Green, R.H. Perry, Perry’s Chemical Engineers’ Handbook/ edición Don W. Green y Robert H. Perry, 1973.
  33. E. Radzyminska-Lenarcik, M. Ulewicz, The use of the steric effect of the carrier molecule in the polymer inclusion membranes for the separation of cobalt (II), nickel (II), copper (II), and zinc (II) ions, Pol. J. Chem. Technol., 17 (2015) 51–56.
  34. C. Onaç, A. Kaya, H. Alpoğuz, M. Yola, S. Eriskin, N. Atar, İ. Şener, Recovery of Cr (VI) by using a novel calix
  35. arene polymeric membrane with modified graphene quantum dots, Int. J. Environ. Sci. Technol., 14 (2017) 2423–2434.
  36. S. Yi, Y. Su, B. Qi, Z. Su, Y. Wan, Application of response surface methodology and central composite rotatable design in optimizing the preparation conditions of vinyltriethoxysilane modified silicalite/polydimethylsiloxane hybrid pervaporation membranes, Sep. Purif. Technol., 71 (2010) 252–262.
  37. T. Keskin Gündoğdu, İ. Deniz, G. Çalışkan, E.S. Şahin, N. Azbar, Experimental design methods for bioengineering applications, Crit. Rev. Biotechnol., 36 (2016) 368–388.
  38. M. Ghanbari, A. Hadian, A. Nourbakhsh, K. MacKenzie, Modeling and optimization of compressive strength and bulk density of metakaolin-based geopolymer using central composite design: a numerical and experimental study, Ceram. Int., 43 (2017) 324–335.
  39. J. Zolgharnein, A. Shahmoradi, J.B. Ghasemi, Comparative study of Box–Behnken, central composite, and Doehlert matrix for multivariate optimization of Pb (II) adsorption onto Robinia tree leaves, J. Chemom., 27 (2013) 12–20.
  40. T.Z.E. Lee, C. Krongchai, N.A.L.M.I. Lu, S. Kittiwachana, S.F. Sim, Application of central composite design for optimization of the removal of humic substances using coconut copra, Int. J. Ind. Chem., 6 (2015) 185–191.
  41. M. Ghaedi, H. Mazaheri, S. Khodadoust, S. Hajati, M. Purkait, Application of central composite design for simultaneous removal of methylene blue and Pb2+ ions by walnut wood activated carbon, Spectrochim. Acta, Part A, 135 (2015) 479–490.
  42. R.G. Brereton, Chemometrics: Data Analysis for the Laboratory and Chemical Plant, John Wiley & Sons, 2003.
  43. M.S. Bhatti, A.S. Reddy, A.K. Thukral, Electrocoagulation removal of Cr (VI) from simulated wastewater using response surface methodology, J. Hazard. Mater., 172 (2009) 839–846.
  44. M. Aliabadi, M. Irani, J. Ismaeili, S. Najafzadeh, Design and evaluation of chitosan/hydroxyapatite composite nanofiber membrane for the removal of heavy metal ions from aqueous solution, J. Taiwan Inst. Chem. Eng., 45 (2014) 518–526.
  45. P. Sharma, B.K. Bajaj, Production of poly-β-hydroxybutyrate by Bacillus cereus PS 10 using biphasic-acid-pretreated rice straw, Int. J. Biol. Macromol., 79 (2015) 704–710.
  46. R. Mohammadi, M.A. Mohammadifar, A.M. Mortazavian, M. Rouhi, J.B. Ghasemi, Z. Delshadian, Extraction optimization of pepsin-soluble collagen from eggshell membrane by response surface methodology (RSM), Food Chem., 190 (2016) 186–193.
  47. A. Zainoodin, S.K. Kamarudin, M. Masdar, W.R.W. Daud, A.B. Mohamad, J. Sahari, Optimization of a porous carbon nanofiber layer for the membrane electrode assembly in DMFC, Energy Convers. Manage., 101 (2015) 525–531.
  48. C. Onac, H.K. Alpoguz, E. Akceylan, M. Yilmaz, Facilitated transport of Cr (VI) through polymer inclusion membrane system containing calix
  49. arene derivative as carrier agent, J. Macromol. Sci. Part A, 50 (2013) 1013–1021.
  50. S.D. Kolev, A.M. St John, R.W. Cattrall, Mathematical modeling of the extraction of uranium (VI) into a polymer inclusion membrane composed of PVC and di-(2-ethylhexyl) phosphoric acid, J. Membr. Sci., 425 (2013) 169–175.
  51. C. Dong, J. Chen, Optimization of process parameters for anaerobic fermentation of corn stalk based on least squares support vector machine, Bioresour. Technol., 271 (2019) 174–181.
  52. X. Meng, Y. Song, Y. Lv, X. Xin, T. Ren, X. Wang, Study on stable mass transfer and enrichment of phenol by 1-octanol/kerosene/ polyvinyl chloride polymer inclusion membrane, Environ. Pollut., 253 (2019) 1100–1106.
  53. C.A. Kozlowski, W. Walkowiak, Removal of chromium (VI) from aqueous solutions by polymer inclusion membranes, Water Res., 36 (2002) 4870–4876.