References

  1. Y. Kholod, S. Okovytyy, G. Kuramshina, M. Qasim, L. Gorb, J. Leszczynski, An analysis of stable forms of CL-20: a DFT study of conformational transitions, infrared and Raman spectra, J. Mol. Struct., 843 (2007) 14–25.
  2. R.L. Simpson, P.A. Urtiew, D.L. Ornellas, G.L. Moody, K.J. Scribner, D.M. Hoffman, CL-20 performance exceeds that of HMX and its sensitivity is moderate, Propell. Explos. Pyrot., 22 (1997) 249–255.
  3. P.Y. Robidoux, G.I. Sunahara, K. Savard, Y. Berthelot, F. Leduc, S. Dodard, M. Martel, P. Gong, J. Hawari, Acute and chronic toxicity of the new explosive CL-20 to the earthworm (Eisenia andrei) exposed to amended natural soils, Environ. Toxicol. Chem., 23 (2004) 1026–1034.
  4. S. Dodard, G.I. Sunahara, M. Sarrazin, P. Gong, R.G. Kuperman, G. Ampleman, S. Thiboutot, J. Hawari, Survival and reproduction of enchytraeid worms (Oligochaeta) in different soil types amended with cyclic nitramine explosives, Environ. Toxicol. Chem., 24 (2005) 2579–2587.
  5. R.G. Kuperman, R.T. Checkai, M. Simini, C.T. Phillips, J.S. Anthony, J.E. Kolakowski, E.A. Davis, Toxicity of emerging energetic soil contaminant CL-20 to potworm Enchytraeus crypticus in freshly amended or weathered and aged treatments, Chemosphere, 62 (2006) 1282–1293.
  6. J.C. Pennington, J.M. Brannon, Environmental fate of explosives, Thermochim. Acta, 384 (2002)163–172.
  7. S. Trott, S.F. Nishino, J. Hawari, J.C. Spain, Biodegradation of the nitramine explosive CL-20, Appl. Environ. Microbiol., 69 (2003) 1871–1874.
  8. P. Karakaya, M. Sidhoum, C. Christodoulatos, S. Nicolich, W. Balas, Aqueous solubility and alkaline hydrolysis of the novel high explosive hexanitrohexaazaisowurtzitane (CL-20), J. Hazard. Mater., 120 (2005) 183–191.
  9. V.K. Balakrishnan, A. Halasz, J. Hawari, Alkaline hydrolysis of the cyclic, nitramine explosives RDX, HMX, and CL-20: new insights into degradation pathways obtained by the observation of novel intermediates, Environ. Sci. Technol., 37 (2003) 1838–1843.
  10. J. Hawari, S. Deschamps, C. Beaulieu, L. Paquet, A. Halasz, Photodegradation of CL-20: Insights into the mechanisms of initial reactions and environmental fate, Water Res., 38 (2004) 4055–4064.
  11. V.K. Balakrishnan, F. Monteil-Rivera, A. Halasz, A. Corbeanu, J. Hawari, Decomposition of the polycyclic nitramine explosive, CL-20, by Fe, Environ. Sci. Technol., 38 (2004) 6861–6866.
  12. B.T. Oh, P.J.J. Alvarez, Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (Rdx) degradation in biologically-active iron columns, Water Air Soil Pollut., 141 (2002) 325–335.
  13. W. Jiamjitrpanich, C. Polprasert, P. Parkpian, R.D. Delaune, A. Jugsujinda, Environmental factors influencing remediation of TNT-contaminated water and soil with nanoscale zero-valent iron particles, J. Environ. Sci. Health, 45 (2010) 263–274.
  14. X. Zhang, S. Lin, Z.L. Chen, M. Megharaj, R. Naidu, Kaolinitesupported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: reactivity, characterization and mechanism, Water Res., 45 (2011) 3481–3488.
  15. N.C. Mueller, J. Braun, J. Bruns, M. Cernik, P. Rissing, D. Rickerby, B. Nowack, Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe, Environ. Sci. Pollut. Res., 19 (2012) 550–558.
  16. Q. Huang, S. Song, Z. Chen, B.W. Hu, J.R. Chen, X.K. Wang, Biochar-based materials and their applications in removal of organic contaminants from wastewater: state-of-the-art review, Biochar, 1 (2019) 45–73.
  17. X.X. Wang, L. Chen, L. Wang, Q.H. Fan, D.Q. Pan, J.X. Li, F.T. Chi, Y.X. Xie, S.J. Yun, C.L. Xiao, F. Luo, J. Wang, X.L. Wang, Synthesis of novel nanomaterials and their application in efficient removal of radionuclides, Sci. China Chem., 62 (2019) 933–967.
  18. H.J. Zhu, Y.F. Jia, X. Wu, H. Wang, Removal of arsenic from water by supported nano zero-valent iron on activated carbon, J. Hazard. Mater., 72 (2009) 1591–1596.
  19. X.S. Lv, J. Xu, G.M. Jiang, X.H. Xu, Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes, Chemosphere, 85 (2011) 1204–1209.
  20. Z. Jiang, L. Lv, W.M. Zhang, Q. Du, B.C. Pan, L. Yang, Q.X. Zhang, Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: role of surface functional groups, Water Res., 45 (2011) 2196–2198.
  21. Z.X. Chen, X.Y. Jin, Z. Chen, M. Megharaj, R. Naidu, Removal of methyl orange from aqueous solution using bentonitesupported nanoscale zero-valent iron, J. Colloid Interface Sci., 363 (2011) 601–607.
  22. X.L. Liu, R. Ma, X.X. Wang, Y. Ma, Y.P. Yang, L. Zhang, S. Zhang, R. Jehan, J.R. Chen, X.K. Wang, Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: a review, Environ. Pollut., 252 (2019) 62–73.
  23. X.H. Jia, H.J. Song, C.Y. Min, X.Q. Zhang, One-step synthesis of Fe3O4 nanorods/graphene nanocomposites, Appl. Phys. A, 109 (2012) 261–265.
  24. J.P. Rourke, P.A. Pandey, J.J. Moore, M. Bates, I.A. Kinloch, R.J. Young, N.R. Wilson, The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets, Angew. Chem. Int. Ed. Engl., 50 (2011) 3173–3177.
  25. Y.B. Sun, C.C. Ding, W.C. Cheng, X.K. Wang, Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron, J. Hazard. Mater., 280 (2014) 399–408.
  26. R.S. Sahu, D.L. Li, R.A. Doong, Unveiling the hydrodechlorination of trichloroethylene by reduced graphene oxide supported bimetallic Fe/Ni nanoparticles, Chem. Eng. J., 334 (2017) 30–40.
  27. X.S. Lv, X.Q. Xue, G.M. Jiang, D.L. Wu, T.T. Sheng, H.Y. Zhou, X.H. Xu, Nanoscale zero-valent iron (nZVI) assembled on magnetic Fe3O4/graphene for Chromium(VI) removal from aqueous solution, J. Colliod Interface Sci., 417 (2014) 51–59.
  28. L.H. Zhang, J.J. Wu, H.B. Liao, Y.L. Hou, S. Gao, Octahedral Fe3O4 nanoparticles and their assembled structures, Chem. Commun., 29 (2009) 4378–4380.
  29. L.L. Fan, C.N. Luo, X.J. Li, F.G. Lu, H.M. Qiu, M. Sun, Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue, J. Hazard. Mater., 215–216 (2012) 272–279.
  30. W.S. Hummers, R.E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc., 80 (1958) 1339–1339.
  31. C.B. Wang, W.X. Zhang, Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs, Environ. Sci. Technol., 31 (1997) 2154–2156.
  32. L.L. Ren, S. Huang, W. Fan, T.X. Liu, One-step preparation of hierarchical superparamagnetic iron oxide/graphene composites via hydrothermal method, Appl. Surf. Sci., 258 (2011) 1132–1138.
  33. X.S. Lv, Y.J. Hu, J. Tang, T.T. Sheng, G.M. Jiang, X.H. Xu, Effects of co-existing ions and natural organic matter on removal of chromium (VI) from aqueous solution by nanoscale zero valent iron (nZVI)-Fe3O4 nanocomposites, Chem. Eng. J., 218 (2013) 55–64.
  34. Y.Y. Ma, X.F. Lv, Q. Yang, Y.Y. Wang, X. Chen, Reduction of carbon tetrachloride by nanoscale palladized zero-valent iron@ graphene composites: kinetics, activation energy, effects of reaction conditions and degradation mechanism, Appl. Catal. A, 542 (2017) 252–261.
  35. X. Sun, Y.B. Yan, J.S. Li, W.Q. Han, L.J. Wang, SBA-15- incorporated nanoscale zero-valent iron particles for chromium(VI) removal from groundwater: mechanism, effect of pH, humic acid and sustained reactivity, J. Hazard. Mater., 266 (2014) 26–33.
  36. Z.S. Wu, W.C. Ren, L. Wen, L.B. Gao, J.P. Zhao, Z.P. Chen, G.M. Zhou, F. Li, H.M. Cheng, Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance, ACS Nano, 4 (2012) 3187–3194.
  37. G.Z. Qu, D.Y. Zeng, R.J. Chu, T.C. Wang, D.L. Liang, H. Qiang, Magnetic Fe3O4 assembled on nZVI supported on activated carbon fiber for Cr(VI) and Cu(II) removal from aqueous solution through a permeable reactive column, Environ. Sci. Pollut. Res., 26 (2019) 5176–5188.
  38. X.F. Lv, H. Li, Y.Y. Ma, H. Yang, Q. Yang, Degradation of carbon tetrachloride by nanoscale zero-valent iron@magnetic Fe3O4: Impact of reaction condition, kinetics, thermodynamics and mechanism, Appl. Organomet. Chem., 32 (2018) 4139–4151.
  39. L.M. Pastrana-Martínez, S. Morales-Torres, V. Likodimos, P. Falaras, J.L. Figueiredo, J.L. Faria, A.M.T. Silva, Role of oxygen functionalities on the synthesis of photocatalytically active graphene-TiO2 composites, Appl. Catal., B, 158–159 (2014) 329–340.
  40. M. Acik, G. Lee, C. Mattevi, A. Pirkle, R.M. Wallace, M. Chhowalla, K. Cho, Y. Chabal, The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy, J. Phys. Chem. C, 115 (2015) 19761–19781.
  41. K. Yang, H.B. Peng, Y.H. Wen, N. Li, Re-examination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles, Appl. Surf. Sci., 256 (2010) 3093–3097.
  42. X.S. Lv, J. Xu, G.M. Jiang, J. Tang, X.H. Xu, Highly active nanoscale zero-valent iron (nZVI)-Fe3O4 nanocomposites for the removal of chromium(VI) from aqueous solutions, J. Colloid. Interface Sci., 369 (2012) 460–469.
  43. X.Y. Li, L.H. Ai, J. Jiang, Nanoscale zerovalent iron decorated on graphene nanosheets for Cr(VI) removal from aqueous solution: Surface corrosion retard induced the enhanced performance, Chem. Eng. J., 288 (2016) 789–797.
  44. C.C. Xu, R. Liu, L.J. Chen, J.L. Tang, Enhanced dechlorination of 2,4-dichlorophenol by recoverable Ni-Fe-Fe3O4 nanocomposites, J. Environ. Sci., 48 (2016) 92–101.
  45. W.Z. Yin, J.H. Wu, P. Li, X.D. Wang, N.W. Zhu, P.X. Wu, Experimental study of zero-valent iron induced nitrobenzene reduction in groundwater: the effects of pH, iron dosage, oxygen and common dissolved anions, Chem. Eng. J., 184 (2012) 198–204.
  46. W. Chen, P. Westerhoff, J.A. Leenheer, K. Booksh, Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter, Environ. Sci. Technol., 37 (2003) 5701–5710.
  47. M. Iram, C. Guo, Y. Guan, A. Ishfaq, H. Liu, Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres, J. Hazard. Mater., 181 (2010) 1039–1050.
  48. Y. Wu, H. Luo, H. Wang, Removal of para-nitrochlorobenzene from aqueous solution on surfactant-modified nanoscale zerovalent iron/graphene nanocomposites, Environ. Technol., 35 (2014) 2698–2707.
  49. S.M. Maliyekkal, A.K. Sharma, L. Philip, Manganese-oxidecoated alumina: a promising sorbent for defluoridation of water, Water Res., 40 (2006) 3497–3506.
  50. B. Bhushan, L. Paquet, J.C. Spain, Biotransformation of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL- 20) by denitrifying Pseudomonas sp. strain FA 1, J. Hawari Appl. Environ. Microbiol., 69 (2003) 5216–5221.
  51. J. March, Advanced Organic Chemistry, 3rd ed. Wiley-Interscience, New York, 1985, pp. 784–785.