References
- Y. Kholod, S. Okovytyy, G. Kuramshina, M. Qasim, L. Gorb,
J. Leszczynski, An analysis of stable forms of CL-20: a DFT
study of conformational transitions, infrared and Raman
spectra, J. Mol. Struct., 843 (2007) 14–25.
- R.L. Simpson, P.A. Urtiew, D.L. Ornellas, G.L. Moody,
K.J. Scribner,
D.M. Hoffman, CL-20 performance exceeds that
of HMX and its sensitivity is moderate, Propell. Explos. Pyrot.,
22 (1997) 249–255.
- P.Y. Robidoux, G.I. Sunahara, K. Savard, Y. Berthelot, F. Leduc,
S. Dodard, M. Martel, P. Gong, J. Hawari, Acute and chronic
toxicity of the new explosive CL-20 to the earthworm (Eisenia
andrei) exposed to amended natural soils, Environ. Toxicol.
Chem., 23 (2004) 1026–1034.
- S. Dodard, G.I. Sunahara, M. Sarrazin, P. Gong, R.G. Kuperman,
G. Ampleman, S. Thiboutot, J. Hawari, Survival and
reproduction of enchytraeid worms (Oligochaeta) in different
soil types amended with cyclic nitramine explosives, Environ.
Toxicol. Chem., 24 (2005) 2579–2587.
- R.G. Kuperman, R.T. Checkai, M. Simini, C.T. Phillips,
J.S. Anthony, J.E. Kolakowski, E.A. Davis, Toxicity of emerging
energetic soil contaminant CL-20 to potworm Enchytraeus
crypticus in freshly amended or weathered and aged treatments,
Chemosphere, 62 (2006) 1282–1293.
- J.C. Pennington, J.M. Brannon, Environmental fate of explosives,
Thermochim. Acta, 384 (2002)163–172.
- S. Trott, S.F. Nishino, J. Hawari, J.C. Spain, Biodegradation
of the nitramine explosive CL-20, Appl. Environ. Microbiol.,
69 (2003) 1871–1874.
- P. Karakaya, M. Sidhoum, C. Christodoulatos, S. Nicolich,
W. Balas, Aqueous solubility and alkaline hydrolysis of the
novel high explosive hexanitrohexaazaisowurtzitane (CL-20),
J. Hazard. Mater., 120 (2005) 183–191.
- V.K. Balakrishnan, A. Halasz, J. Hawari, Alkaline hydrolysis of
the cyclic, nitramine explosives RDX, HMX, and CL-20: new
insights into degradation pathways obtained by the observation
of novel intermediates, Environ. Sci. Technol., 37 (2003) 1838–1843.
- J. Hawari, S. Deschamps, C. Beaulieu, L. Paquet, A. Halasz,
Photodegradation of CL-20: Insights into the mechanisms of
initial reactions and environmental fate, Water Res., 38 (2004)
4055–4064.
- V.K. Balakrishnan, F. Monteil-Rivera, A. Halasz, A. Corbeanu,
J. Hawari, Decomposition of the polycyclic nitramine explosive,
CL-20, by Fe, Environ. Sci. Technol., 38 (2004) 6861–6866.
- B.T. Oh, P.J.J. Alvarez, Hexahydro-1,3,5-Trinitro-1,3,5-Triazine
(Rdx) degradation in biologically-active iron columns, Water
Air Soil Pollut., 141 (2002) 325–335.
- W. Jiamjitrpanich, C. Polprasert, P. Parkpian, R.D. Delaune,
A. Jugsujinda, Environmental factors influencing remediation
of TNT-contaminated water and soil with nanoscale zero-valent
iron particles, J. Environ. Sci. Health, 45 (2010) 263–274.
- X. Zhang, S. Lin, Z.L. Chen, M. Megharaj, R. Naidu, Kaolinitesupported
nanoscale zero-valent iron for removal of Pb2+ from
aqueous solution: reactivity, characterization and mechanism,
Water Res., 45 (2011) 3481–3488.
- N.C. Mueller, J. Braun, J. Bruns, M. Cernik, P. Rissing,
D. Rickerby, B. Nowack, Application of nanoscale zero valent
iron (NZVI) for groundwater remediation in Europe, Environ.
Sci. Pollut. Res., 19 (2012) 550–558.
- Q. Huang, S. Song, Z. Chen, B.W. Hu, J.R. Chen, X.K. Wang,
Biochar-based materials and their applications in removal of
organic contaminants from wastewater: state-of-the-art review,
Biochar, 1 (2019) 45–73.
- X.X. Wang, L. Chen, L. Wang, Q.H. Fan, D.Q. Pan, J.X. Li,
F.T. Chi, Y.X. Xie, S.J. Yun, C.L. Xiao, F. Luo, J. Wang, X.L. Wang,
Synthesis of novel nanomaterials and their application in
efficient removal of radionuclides, Sci. China Chem., 62 (2019)
933–967.
- H.J. Zhu, Y.F. Jia, X. Wu, H. Wang, Removal of arsenic from
water by supported nano zero-valent iron on activated carbon,
J. Hazard. Mater., 72 (2009) 1591–1596.
- X.S. Lv, J. Xu, G.M. Jiang, X.H. Xu, Removal of chromium(VI)
from wastewater by nanoscale zero-valent iron particles
supported on multiwalled carbon nanotubes, Chemosphere,
85 (2011) 1204–1209.
- Z. Jiang, L. Lv, W.M. Zhang, Q. Du, B.C. Pan, L. Yang, Q.X. Zhang,
Nitrate reduction using nanosized zero-valent iron supported
by polystyrene resins: role of surface functional groups, Water
Res., 45 (2011) 2196–2198.
- Z.X. Chen, X.Y. Jin, Z. Chen, M. Megharaj, R. Naidu, Removal
of methyl orange from aqueous solution using bentonitesupported
nanoscale zero-valent iron, J. Colloid Interface Sci.,
363 (2011) 601–607.
- X.L. Liu, R. Ma, X.X. Wang, Y. Ma, Y.P. Yang, L. Zhang, S. Zhang,
R. Jehan, J.R. Chen, X.K. Wang, Graphene oxide-based materials
for efficient removal of heavy metal ions from aqueous solution:
a review, Environ. Pollut., 252 (2019) 62–73.
- X.H. Jia, H.J. Song, C.Y. Min, X.Q. Zhang, One-step synthesis
of Fe3O4 nanorods/graphene nanocomposites, Appl. Phys. A,
109 (2012) 261–265.
- J.P. Rourke, P.A. Pandey, J.J. Moore, M. Bates, I.A. Kinloch,
R.J. Young, N.R. Wilson, The real graphene oxide revealed:
stripping the oxidative debris from the graphene-like sheets,
Angew. Chem. Int. Ed. Engl., 50 (2011) 3173–3177.
- Y.B. Sun, C.C. Ding, W.C. Cheng, X.K. Wang, Simultaneous
adsorption and reduction of U(VI) on reduced graphene
oxide-supported nanoscale zerovalent iron, J. Hazard. Mater.,
280 (2014) 399–408.
- R.S. Sahu, D.L. Li, R.A. Doong, Unveiling the hydrodechlorination
of trichloroethylene by reduced graphene oxide
supported bimetallic Fe/Ni nanoparticles, Chem. Eng. J.,
334 (2017) 30–40.
- X.S. Lv, X.Q. Xue, G.M. Jiang, D.L. Wu, T.T. Sheng, H.Y. Zhou,
X.H. Xu, Nanoscale zero-valent iron (nZVI) assembled on
magnetic Fe3O4/graphene for Chromium(VI) removal from
aqueous solution, J. Colliod Interface Sci., 417 (2014) 51–59.
- L.H. Zhang, J.J. Wu, H.B. Liao, Y.L. Hou, S. Gao, Octahedral
Fe3O4 nanoparticles and their assembled structures, Chem.
Commun., 29 (2009) 4378–4380.
- L.L. Fan, C.N. Luo, X.J. Li, F.G. Lu, H.M. Qiu, M. Sun,
Fabrication of novel magnetic chitosan grafted with graphene
oxide to enhance adsorption properties for methyl blue, J.
Hazard. Mater., 215–216 (2012) 272–279.
- W.S. Hummers, R.E. Offeman, Preparation of Graphitic Oxide,
J. Am. Chem. Soc., 80 (1958) 1339–1339.
- C.B. Wang, W.X. Zhang, Synthesizing nanoscale iron particles
for rapid and complete dechlorination of TCE and PCBs,
Environ. Sci. Technol., 31 (1997) 2154–2156.
- L.L. Ren, S. Huang, W. Fan, T.X. Liu, One-step preparation
of hierarchical superparamagnetic iron oxide/graphene
composites via hydrothermal method, Appl. Surf. Sci., 258
(2011) 1132–1138.
- X.S. Lv, Y.J. Hu, J. Tang, T.T. Sheng, G.M. Jiang, X.H. Xu, Effects
of co-existing ions and natural organic matter on removal of
chromium (VI) from aqueous solution by nanoscale zero valent
iron (nZVI)-Fe3O4 nanocomposites, Chem. Eng. J., 218 (2013)
55–64.
- Y.Y. Ma, X.F. Lv, Q. Yang, Y.Y. Wang, X. Chen, Reduction of
carbon tetrachloride by nanoscale palladized zero-valent iron@
graphene composites: kinetics, activation energy, effects of
reaction conditions and degradation mechanism, Appl. Catal.
A, 542 (2017) 252–261.
- X. Sun, Y.B. Yan, J.S. Li, W.Q. Han, L.J. Wang, SBA-15-
incorporated nanoscale zero-valent iron particles for
chromium(VI) removal from groundwater: mechanism, effect
of pH, humic acid and sustained reactivity, J. Hazard. Mater.,
266 (2014) 26–33.
- Z.S. Wu, W.C. Ren, L. Wen, L.B. Gao, J.P. Zhao, Z.P. Chen,
G.M. Zhou, F. Li, H.M. Cheng, Graphene anchored with Co3O4
nanoparticles as anode of lithium ion batteries with enhanced
reversible capacity and cyclic performance, ACS Nano, 4 (2012)
3187–3194.
- G.Z. Qu, D.Y. Zeng, R.J. Chu, T.C. Wang, D.L. Liang, H. Qiang,
Magnetic Fe3O4 assembled on nZVI supported on activated
carbon fiber for Cr(VI) and Cu(II) removal from aqueous
solution through a permeable reactive column, Environ. Sci.
Pollut. Res., 26 (2019) 5176–5188.
- X.F. Lv, H. Li, Y.Y. Ma, H. Yang, Q. Yang, Degradation of carbon
tetrachloride by nanoscale zero-valent iron@magnetic Fe3O4:
Impact of reaction condition, kinetics, thermodynamics and
mechanism, Appl. Organomet. Chem., 32 (2018) 4139–4151.
- L.M. Pastrana-Martínez, S. Morales-Torres, V. Likodimos, P.
Falaras, J.L. Figueiredo, J.L. Faria, A.M.T. Silva, Role of oxygen
functionalities on the synthesis of photocatalytically active
graphene-TiO2 composites, Appl. Catal., B, 158–159 (2014)
329–340.
- M. Acik, G. Lee, C. Mattevi, A. Pirkle, R.M. Wallace, M.
Chhowalla, K. Cho, Y. Chabal, The role of oxygen during thermal
reduction of graphene oxide studied by infrared absorption
spectroscopy, J. Phys. Chem. C, 115 (2015) 19761–19781.
- K. Yang, H.B. Peng, Y.H. Wen, N. Li, Re-examination of
characteristic FTIR spectrum of secondary layer in bilayer oleic
acid-coated Fe3O4 nanoparticles, Appl. Surf. Sci., 256 (2010)
3093–3097.
- X.S. Lv, J. Xu, G.M. Jiang, J. Tang, X.H. Xu, Highly active
nanoscale zero-valent iron (nZVI)-Fe3O4 nanocomposites for the
removal of chromium(VI) from aqueous solutions, J. Colloid.
Interface Sci., 369 (2012) 460–469.
- X.Y. Li, L.H. Ai, J. Jiang, Nanoscale zerovalent iron decorated on
graphene nanosheets for Cr(VI) removal from aqueous solution:
Surface corrosion retard induced the enhanced performance,
Chem. Eng. J., 288 (2016) 789–797.
- C.C. Xu, R. Liu, L.J. Chen, J.L. Tang, Enhanced dechlorination of
2,4-dichlorophenol by recoverable Ni-Fe-Fe3O4 nanocomposites,
J. Environ. Sci., 48 (2016) 92–101.
- W.Z. Yin, J.H. Wu, P. Li, X.D. Wang, N.W. Zhu, P.X. Wu,
Experimental study of zero-valent iron induced nitrobenzene
reduction in groundwater: the effects of pH, iron dosage,
oxygen and common dissolved anions, Chem. Eng. J., 184
(2012) 198–204.
- W. Chen, P. Westerhoff, J.A. Leenheer, K. Booksh, Fluorescence
excitation-emission matrix regional integration to quantify
spectra for dissolved organic matter, Environ. Sci. Technol., 37
(2003) 5701–5710.
- M. Iram, C. Guo, Y. Guan, A. Ishfaq, H. Liu, Adsorption and
magnetic removal of neutral red dye from aqueous solution
using Fe3O4 hollow nanospheres, J. Hazard. Mater., 181 (2010)
1039–1050.
- Y. Wu, H. Luo, H. Wang, Removal of para-nitrochlorobenzene
from aqueous solution on surfactant-modified nanoscale zerovalent
iron/graphene nanocomposites, Environ. Technol.,
35 (2014) 2698–2707.
- S.M. Maliyekkal, A.K. Sharma, L. Philip, Manganese-oxidecoated
alumina: a promising sorbent for defluoridation of
water, Water Res., 40 (2006) 3497–3506.
- B. Bhushan, L. Paquet, J.C. Spain, Biotransformation of
2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-
20) by denitrifying Pseudomonas sp. strain FA 1, J. Hawari Appl.
Environ. Microbiol., 69 (2003) 5216–5221.
- J. March, Advanced Organic Chemistry, 3rd ed. Wiley-Interscience, New York, 1985, pp. 784–785.