References

  1. V. Vaiano, G. Sarno, O. Sacco, D. Sannino, Degradation of terephthalic acid in a photocatalytic system able to work also at high pressure, Chem. Eng. J., 312 (2017) 10–19.
  2. Z.Y. Zhang, L.P. Ma, X.X. Zhang, W.X. Li, Y. Zhang, B. Wu, L.Y. Yang, S.P. Cheng, Genomic expression profiles in liver of mice exposed to purified terephthalic acid manufacturing wastewater, J. Hazard. Mater., 181 (2010) 1121–1126.
  3. X.X. Zhang, S.L. Sun, Y. Zhang, B. Wu, Z.Y. Zhang, B. Liu, L.Y. Yang, S.P. Cheng, Toxicity of purified terephthalic acid manufacturing wastewater on reproductive system of male mice (Mus musculus), J. Hazard. Mater., 176 (2010) 300–305.
  4. M.M. Liu, S.Q. Wang, M.K. Nobu, B.T.W. Bocher, S.A. Kaley, W.T. Liu, Impacts of biostimulation and bioaugmentation on the performance and microbial ecology in methanogenic reactors treating purified terephthalic acid wastewater, Water Res., 122 (2017) 308–316.
  5. S.S. Cheng, C.Y. Ho, J.H. Wu, Pilot study of UASB process treating PTA manufacturing wastewater, Water Sci. Technol., 36 (1997) 73–82.
  6. A. Shafaei, M. Nikazar, M. Arami, Photocatalytic degradation of terephthalic acid using titania and zinc oxide photocatalysts: comparative study, Desalination, 252 (2010) 8–16.
  7. R. Kleerebezem, J. Mortier, L.W.H. Pol, G. Lettinga, Anaerobic pre-treatment of petrochemical effluents: terephthalic acid wastewater, Water Sci. Technol., 36 (1997) 237–248.
  8. Y.S. Lee, G.B. Han, Treatment of wastewater from purified terephthalic acid (PTA) production in a two-stage anaerobic expanded granular sludge bed system, Environ. Eng. Res., 19 (2014) 355–361.
  9. K.L. Ma, X.K. Li, L.L. Bao, Influence of organic loading rate on purified terephthalic acid wastewater treatment in a temperature staged anaerobic treatment (TSAT) system: performance and metagenomic characteristics, Chemosphere, 220 (2019) 1091–1099.
  10. J.W. Liu, J. Zhou, N. Xu, A.Y. He, F.X. Xin, J.F. Ma, Y. Fang, W.N. Zhang, S.X. Liu, M. Jiang, W.L. Dong, Performance evaluation of a lab-scale moving bed biofilm reactor (MBBR) using polyethylene as support material in the treatment of wastewater contaminated with terephthalic acid, Chemosphere, 227 (2019) 117–123.
  11. G.R. Pophali, R. Khan, R.S. Dhodapkar, T. Nandy, S. Devotta, Anaerobic–aerobic treatment of purified terephthalic acid (PTA) effluent; a techno-economic alternative to two-stage aerobic process, J. Environ. Manage., 85 (2007) 1024–1033.
  12. A. Babuponnusami, K. Muthukumar, A review on Fenton and improvements to the Fenton process for wastewater treatment, J. Environ. Chem. Eng., 2 (2014) 557–572.
  13. M. Zhang, H. Dong, L. Zhao, D.X. Wang, D. Meng, A review on Fenton process for organic wastewater treatment based on optimization perspective, Sci. Total Environ., 670 (2019) 110–121.
  14. R. Dewil, D. Mantzavinos, I. Poulios, M.A. Rodrigo, New perspectives for advanced oxidation processes, J. Environ. Manage., 195 (2017) 93–99.
  15. H.Y. Xu, M. Prasad, Y. Liu, Schorl: a novel catalyst in mineral-catalyzed Fenton-like system for dyeing wastewater discoloration, J. Hazard. Mater., 165 (2009) 1186–1192.
  16. C.P. Wang, Y.W. Zhang, L. Yu, Z.Y. Zhang, H.W. Sun, Oxidative degradation of azo dyes using tourmaline, J. Hazard. Mater., 260 (2013) 851–859.
  17. L. Rizzo, T. Agovino, S. Nahim-Granados, M. Castro-Alférez, P. Fernández-Ibáñez, M.I. Polo-López, Tertiary treatment of urban wastewater by solar and UV-C driven advanced oxidation with peracetic acid: effect on contaminants of emerging concern and antibiotic resistance, Water Res., 149 (2019) 272–281.
  18. M.Y. Kilic, W.H. Abdelraheem, X. He, K. Kestioglu, D.D. Dionysiou, Photochemical treatment of tyrosol, a model phenolic compound present in olive mill wastewater, by hydroxyl and sulfate radical-based advanced oxidation processes (AOPs), J. Hazard. Mater., 367 (2019) 734–742.
  19. D. Wang, H.D. Xu, J. Ma, X.H. Lu, J.Y. Qi, S. Song, Strong promoted catalytic ozonation of atrazine at low temperature using tourmaline as catalyst: Influencing factors, reaction mechanisms and pathways, Chem. Eng. J., 354 (2018) 113–125.
  20. A. Gallego-Schmid, R.R.Z. Tarpani, S. Miralles-Cuevas, A. Cabrera-Reina, S. Malato, A. Azapagic, Environmental assessment of solar photo-Fenton processes in combination with nanofiltration for the removal of micro-contaminants from real wastewaters, Sci. Total Environ., 650 (2019) 2210–2220.
  21. X.D. Qi, Z.H. Li, Efficiency optimization of a microwaveassisted Fenton-like process for the pretreatment of chemical synthetic pharmaceutical wastewater, Desal. Wat. Treat., 57 (2016) 11756–11764.
  22. K.C. Pillai, T.O. Kwon, I.S. Moon, Degradation of wastewater from terephthalic acid manufacturing process by ozonation catalyzed with Fe2+, H2O2 and UV light: direct versus indirect ozonation reactions, Appl. Catal., B, 91 (2009) 319–328.
  23. H.B. Yener, M. Yılmaz, Ö. Deliismail, S.F. Özkan, Ş.Ş. Helvacı, Clinoptilolite supported rutile TiO2 composites: synthesis, characterization, and photocatalytic activity on the degradation of terephthalic acid, Sep. Purif. Technol., 173 (2017) 17–26.
  24. R. Thiruvenkatachari, T.O. Kwon, J.C. Jun, S. Balaji, M. Matheswaran, I.S. Moon, Application of several advanced oxidation processes for the destruction of terephthalic acid (TPA), J. Hazard. Mater., 142 (2007) 308–314.
  25. I. Fuentes, J.L. Rodríguez, T. Poznyak, I. Chairez, Photocatalytic ozonation of terephthalic acid: a by-product-oriented decomposition study, Environ. Sci. Pollut. Res., 21 (2014) 12241–12248.
  26. N.N. Wang, T. Zheng, G.S. Zhang, P. Wang, A review on Fenton-like processes for organic wastewater treatment, J. Environ. Chem. Eng., 4 (2016) 762–787.
  27. D.J. Henry, M. Novák, F.C. Hawthorne, A. Ertl, B.L. Dutrow, P. Uher, F. Pezzotta, Nomenclature of the tourmalinesupergroup minerals, Am. Mineral., 96 (2011) 895–913.
  28. L. Yu, C.P. Wang, X.H. Ren, H.W. Sun, Catalytic oxidative degradation of bisphenol A using an ultrasonic-assisted tourmaline-based system: influence factors and mechanism study, Chem. Eng. J., 252 (2014) 346–354.
  29. J. Yao, B. Pan, R. Shen, T. Yuan, J. Wang, Differential control of anode/cathode potentials of paired electrolysis for simultaneous removal of chemical oxygen demand and total nitrogen, Sci. Total Environ., 687 (2019) 198–205.
  30. J.P. Meng, J.S. Liang, X. Ou, Y. Ding, G. Liang, Effects of mineral tourmaline particles on the photocatalytic activity of TiO2 thin films, J. Nanosci. Nanotechnol., 8 (2008) 1279–1283.
  31. Y.M. Hu, X. Yang, The surface organic modification of tourmaline powder by span-60 and its composite, Appl. Surf. Sci., 258 (2012) 7540–7545.
  32. A.P. Grosvenor, B.A. Kobe, M.C. Biesinger, N.S. McIntyre, Investigation of multiplet splitting of Fe2p XPS spectra and bonding in iron compounds, Surf. Interface Anal., 36 (2004) 1564–1574.
  33. T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci., 254 (2008) 2441–2449.
  34. Y.Y. Chen, Y.L. Ma, J. Yang, L.Q. Wang, J.M. Lv, C.J. Ren, Aqueous tetracycline degradation by H2O2 alone: removal and transformation pathway, Chem. Eng. J., 307 (2017) 15–23.
  35. J. De Laat, H. Gallard, Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: mechanism and kinetic modeling, Environ. Sci. Technol., 33 (1999) 2726–2732.
  36. K. Rusevova, F.D. Kopinke, A. Georgi, Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions - Influence of Fe(II)/Fe(III) ratio on catalytic performance, J. Hazard. Mater., 241 (2012) 433–440.
  37. Y.H. Zhang, J. Shi, Z.W. Xu, Y. Chen, D.M. Song, Degradation of tetracycline in a schorl/H2O2 system: Proposed mechanism and intermediates, Chemosphere, 202 (2018) 661–668.
  38. H. Macarie, A. Noyola, J.P. Guyot, Anaerobic treatment of a petrochemical wastewater from a terephthalic acid plant, Water Sci. Technol., 25 (1992) 223–235.
  39. S. Hashemian, Fenton-like oxidation of malachite green solutions: kinetic and thermodynamic study, J. Chem., (2013) 7 p, https://doi.org/10.1155/2013/809318.
  40. T.A. Kurniawan, W.H. Lo, Removal of refractory compounds from stabilized landfill leachate using an integrated H2O2 oxidation and granular activated carbon (GAC) adsorption treatment, Water Res., 43 (2009) 4079–4091.
  41. C. Catrinescu, C. Teodosiu, M. Macoveanu, J. Miehe-Brendlé, R.L. Dred, Catalytic wet peroxide oxidation of phenol over Fe-exchanged pillared beidellite, Water Res., 37 (2003) 1154–1160.
  42. M. Saran, K.H. Summer, Assaying for hydroxyl radicals: hydroxylated terephthalate is a superior fluorescence marker than hydroxylated benzoate, Free Radical Res., 31 (1999) 429–436.
  43. T. Charbouillot, M. Brigante, G. Mailhot, P.R. Maddigapu, C. Minero, D. Vione, Performance and selectivity of the terephthalic acid probe for OH as a function of temperature, pH and composition of atmospherically relevant aqueous media, J. Photochem. Photobiol., A, 222 (2011) 70–76.
  44. Y. Zhuang, B.B. Jiang, J.D. Wang, Y.R. Yang, Catalytic decarboxylation mechanism of terephthalic acid to benzene over ZnO catalyst, Acta Petrolei Sinica (Petroleum Procession Section), 31 (2015) 698–704.
  45. K. Bubacz, E. Kusiak-Nejman, B. Tryba, A.W. Morawski, Investigation of OH radicals formation on the surface of TiO2/N photocatalyst at the presence of terephthalic acid solution. Estimation of optimal conditions, J. Photochem. Photobiol. A, 261 (2013) 7–11.
  46. R. Ojani, A. Khanmohammadi, J.B. Raoof, Photoelectrocatalytic degradation of p-hydroxybenzoic acid at the surface of a titanium/titanium dioxide nanotube array electrode using electrochemical monitoring, Mater. Sci. Semicond. Process., 31 (2015) 651–657.
  47. R. Oliveira, D. Geraldo, F. Bento, Electrogenerated HO radical reactions: the role of competing reactions on the degradation kinetics of hydroxy-containing aromatic compounds, Electrochim. Acta, 135 (2014) 19–26.
  48. V.S. Mohite, M.A. Mahadik, S.S. Kumbhar, Y.M. Hunge, J.H. Kim, A.V. Moholkar, K.Y. Rajpure, C.H. Bhosale, Photoelectrocatalytic degradation of benzoic acid using Au doped TiO2 thin films, J. Photochem. Photobiol. B, 142 (2015) 204–211.
  49. J.M. Fontmorin, F. Fourcade, F. Geneste, D. Floner, S. Huguet, A. Amrane, Combined process for 2, 4-dichlorophenoxyacetic acid treatment-coupling of an electrochemical system with a biological treatment, Biochem. Eng. J., 70 (2013) 17–22.
  50. D. Mantzavinos, E. Psillakis, Enhancement of biodegradability of industrial wastewaters by chemical oxidation pre-treatment, J. Chem. Technol. Biotechnol., 79 (2004) 431–454.
  51. L. Rizzo, Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment, Water Res., 45 (2011) 4311–4340.
  52. A.R. Prazeres, F. Carvalho, J. Rivas, Fenton-like application to pretreated cheese whey wastewater, J. Environ. Manage., 129 (2013) 199–205.