References

  1. O.E. Ligrini, A. Oliveros, A.M. Braun, Photochemical processes for water treatment, Chem. Rev., 93 (1993) 671–698.
  2. V.S. Bhamare, R.M. Kulkarni, Kinetics and mechanistic investigation of Ru(III) catalyzed oxidative degradation of linezolid by permanganate at environmentally relevant pH, Asian J. Chem., 31 (2019) 268–274.
  3. R.M. Kulkarni, V.S. Bhamare, B. Santhakumari, Mechanistic and spectroscopic investigations of Ru3+-catalyzed oxidative degradation of azidothymidine by heptavalent manganese at environmentally relevant pH, Desal. Wat. Treat., 57 (2016) 28349–28362.
  4. J. Hoigne, Inter-calibration of OH radical sources and water quality parameters, Water Sci. Technol., 35 (1997) 1–8.
  5. V.S. Bhamare, R.M. Kulkarni, Photocatalytic degradation of pharmaceutical drug zidovudine by undoped and 5% barium doped zinc oxide nanoparticles during water treatment: synthesis and characterisation, Int. J. App. Pharm., 11 (2019) 227–236.
  6. V.S. Bhamare, R.M. Kulkarni, Synthesis, characterisation and photocatalytic degradation of linezolid during water treatment by ruthenium doped titanium dioxide semiconducting nanoparticles, AIP Conf. Proc., 2142 (2019) 210005.
  7. Md. T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, M.M. Muller, H.J. Kleebe, K. Rachut, J. Ziegler, A. Klein, W. Jaegermann, Preparation of RuO2/TiO2 mesoporous heterostructures and rationalization of their enhanced photocatalytic properties by band alignment investigations, J. Phys. Chem. C., 117 (2013) 22098–22110.
  8. Md. T. Uddin, O. Babot, L. Thomas, C. Olivier, M. Redaelli, M. D’Arienzo, F. Morazzoni, W. Jaegermann, N. Rockstroh, H. Junge, T. Toupance, New insights into the photocatalytic properties of RuO2/TiO2 mesoporous heterostructures for hydrogen production and organic pollutant photodecomposition, J. Phys. Chem. C., 119 (2015) 7006–7015.
  9. A.A. Ismail, L. Robben, D.W. Bahnemann, Study of the efficiency of UV and visible-light photocatalytic oxidation of methanol on mesoporous RuO2-TiO2 nanocomposites, Chemphyschem, 12 (2011) 982–991.
  10. R.M. Kulkarni, R.S. Malladi, M.S. Hanagadakar, M.R. Doddamani, B. Santhakumari, S.D. Kulkarni, Ru-TiO2 semiconducting nanoparticles for the photo-catalytic degradation of bromothymol blue, J. Mater. Sci. - Mater. Electron., 27 (2016) 13065–13074.
  11. V.S. Bhamare, R.M. Kulkarni, B. Santhakumari, 5% Barium doped zinc oxide semiconductor nanoparticles for the photocatalytic degradation of linezolid: synthesis and characterisation, SN Appl. Sci., 103 (2019) 1–12.
  12. X. Shu, J. He, D. Chen, Visible-light-induced photocatalyst based on nickel titanate nanoparticles, Ind. Eng. Chem. Res., 47 (2008) 4750–4753.
  13. K. Kumar, M. Chitkara, I.S. Sandhu, D. Mehta, S. Kumar, Photocatalytic, optical and magnetic properties of Fe-doped ZnO nanoparticles prepared by chemical route, J. Alloys Compd., 588 (2014) 681–689.
  14. G. Stiver, The treatment of influenza with antiviral drugs, CMAJ, 168 (2003) 49–56.
  15. R.M. Kulkarni, V.S. Bhamare, B. Santhakumari, Oxidative transformation of antiretroviral drug zidovudine during water treatment with permanganate: reaction kinetics and pathways, Desal. Wat. Treat., 57 (2016) 24999–25010.
  16. K. Wetchakun, N. Wetchakun, S. Phanichphant, Enhancement of the photocatalytic performance of Ru-doped TiO2 nanoparticles, Adv. Mater. Res., 853 (2008) 55–57.
  17. S. Ozkan, M.W. Kumthekar, G. Karakas, Characterization and temperature-programmed studies over Pd/TiO2 catalysts for NO reduction with methane, Catal. Today, 40 (1998) 3–14.
  18. A. Taicheng, H. Yang, W. Song, G. Li, H. Luo, J.C. William, Mechanistic considerations for the advanced oxidation treatment of fluroquinolone pharmaceutical compounds using TiO2 heterogeneous catalysis, J. Phys. Chem. A., 114 (2010) 2569–2575.
  19. M.S. Lee, S.H. Seong, M. Mohseni, Synthesis of photocatalytic nanosized TiO2-Ag particles with sol-gel method using reduction agent, J. Mol. Catal. A: Chem, 242 (2005) 135–140.
  20. M.B. Muneer, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation, Int. J. Electrochem. Sci., 7 (2012) 4871–4888.
  21. M.A. Hema, Y. Arasi, P. Tamilselvi, R. Anbarasan, Titania nanoparticles synthesized by sol-gel technique, Chem. Sci. Trans., 2 (2013) 239–245.
  22. P. Makuła, M. Pacia, W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra, J. Phys. Chem. Lett., 9 (2018) 6814–6817.
  23. A.N. Kadam, R.S. Dhabbe, M.R. Kokate, Y.B. Gaikwad, K.M. Garadkar, Preparation of N doped TiO2 via microwaveassisted method and its photocatalytic activity for degradation of Malathion, Spectrochim. Acta, Part A, 133 (2014) 669–676.
  24. C.C. Wang, C.K. Lee, M.D. Lyu, L.C. Juang, Photocatalytic degradation of C.I. Basic Violet using TiO2 catalysts supported by Y. zeolite an investigation of the effects of operational parameters, Dyes Pigm.,76 (2008) 312–319.
  25. J. Sun, L. Qiao, S. Sun, G. Wang, Photocatalytic degradation of Orange G on nitrogen doped TiO2 catalyst under visible light and sunlight irradiation, J. Hazard. Mater., 155 (2008) 312–319.
  26. S.M. Santhosh, G.R. Balakrishna, Catalysed degradation of indanthrene golden Orange RG in sunlight with vanadiumdoped TiO2, Int. J. Chem. Sci., 6 (2008) 1752–1771.
  27. H. Chun, W. Yizhong, T. Hongxiao, Destruction of phenol aqueous solution by photocatalysis or direct photolysis, Chemosphere, 41 (2000) 1205–1209.
  28. C. Hu, Y. Tang, J.C. Yu, P.K. Wong, Photocatalytic degradation of cationic blue X-GRL adsorbed on TiO2/SiO2 photocatalyst, Appl. Catal., B, 40 (2003) 131–140.
  29. U.I. Gaya, A.H.J. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems, J. Photochem. Photobiol., C, 9 (2008) 1–12.
  30. I.T. Horvath, Encyclopedia of Catalysis, Wiley, New York, 2003.
  31. N.J. Peill, M.R. Hoffmann, Mathematical model of a photocatalytic fiber-optic cable reactor for heterogeneous photocatalysis, Environ. Sci. Technol., 32 (1998) 398–404.
  32. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations - a review, Appl. Catal., B, 49 (2004) 1–14.
  33. Y. Ohko, T. Tatsuma, A. Fujishima, Characterization of TiO2 photocatalysis in the gas phase as a photo electrochemical system: behavior of salt-modified system, J. Phys. Chem., 105 (2001) 10016–10021.
  34. N.M. Mahmoodi, M. Arami, N.Y. Limaee, N.S. Tabrizi, Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor, J. Colloid Interface Sci., 295 (2006) 159–164.
  35. S. Banerjee, J. Gopal, P. Muraleedharan, A.K. Tyagi, B. Raj, Physics and Chemistry of photocatalytic titanium dioxide: visualization of bacterial activity using atomic force microscopy, Curr. Sci., 90 (2006) 1378–1383.
  36. S. Baruah, J. Dutta, Nanotechnology applications in pollution sensing and degradation in agriculture, Environ. Chem. Lett., 7 (2009) 191–204.
  37. C.S. Turchi, D.F. Ollis, Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack, J. Catal., 122 (1990) 178–192.