References
- O.E. Ligrini, A. Oliveros, A.M. Braun, Photochemical processes
for water treatment, Chem. Rev., 93 (1993) 671–698.
- V.S. Bhamare, R.M. Kulkarni, Kinetics and mechanistic investigation
of Ru(III) catalyzed oxidative degradation of linezolid by
permanganate at environmentally relevant pH, Asian J. Chem.,
31 (2019) 268–274.
- R.M. Kulkarni, V.S. Bhamare, B. Santhakumari, Mechanistic
and spectroscopic investigations of Ru3+-catalyzed oxidative
degradation of azidothymidine by heptavalent manganese
at environmentally relevant pH, Desal. Wat. Treat., 57 (2016)
28349–28362.
- J. Hoigne, Inter-calibration of OH radical sources and water
quality parameters, Water Sci. Technol., 35 (1997) 1–8.
- V.S. Bhamare, R.M. Kulkarni, Photocatalytic degradation of
pharmaceutical drug zidovudine by undoped and 5% barium
doped zinc oxide nanoparticles during water treatment: synthesis
and characterisation, Int. J. App. Pharm., 11 (2019) 227–236.
- V.S. Bhamare, R.M. Kulkarni, Synthesis, characterisation and
photocatalytic degradation of linezolid during water treatment
by ruthenium doped titanium dioxide semiconducting
nanoparticles, AIP Conf. Proc., 2142 (2019) 210005.
- Md. T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, M.M. Muller,
H.J. Kleebe, K. Rachut, J. Ziegler, A. Klein, W. Jaegermann,
Preparation of RuO2/TiO2 mesoporous heterostructures and
rationalization of their enhanced photocatalytic properties by
band alignment investigations, J. Phys. Chem. C., 117 (2013)
22098–22110.
- Md. T. Uddin, O. Babot, L. Thomas, C. Olivier, M. Redaelli, M.
D’Arienzo, F. Morazzoni, W. Jaegermann, N. Rockstroh, H. Junge,
T. Toupance, New insights into the photocatalytic properties
of RuO2/TiO2 mesoporous heterostructures for hydrogen
production and organic pollutant photodecomposition, J. Phys.
Chem. C., 119 (2015) 7006–7015.
- A.A. Ismail, L. Robben, D.W. Bahnemann, Study of the efficiency
of UV and visible-light photocatalytic oxidation of methanol
on mesoporous RuO2-TiO2 nanocomposites, Chemphyschem,
12 (2011) 982–991.
- R.M. Kulkarni, R.S. Malladi, M.S. Hanagadakar, M.R. Doddamani,
B. Santhakumari, S.D. Kulkarni, Ru-TiO2 semiconducting
nanoparticles for the photo-catalytic degradation
of bromothymol blue, J. Mater. Sci. - Mater. Electron., 27 (2016)
13065–13074.
- V.S. Bhamare, R.M. Kulkarni, B. Santhakumari, 5% Barium
doped zinc oxide semiconductor nanoparticles for the photocatalytic
degradation of linezolid: synthesis and characterisation,
SN Appl. Sci., 103 (2019) 1–12.
- X. Shu, J. He, D. Chen, Visible-light-induced photocatalyst
based on nickel titanate nanoparticles, Ind. Eng. Chem. Res.,
47 (2008) 4750–4753.
- K. Kumar, M. Chitkara, I.S. Sandhu, D. Mehta, S. Kumar,
Photocatalytic, optical and magnetic properties of Fe-doped
ZnO nanoparticles prepared by chemical route, J. Alloys
Compd., 588 (2014) 681–689.
- G. Stiver, The treatment of influenza with antiviral drugs,
CMAJ, 168 (2003) 49–56.
- R.M. Kulkarni, V.S. Bhamare, B. Santhakumari, Oxidative
transformation of antiretroviral drug zidovudine during water
treatment with permanganate: reaction kinetics and pathways,
Desal. Wat. Treat., 57 (2016) 24999–25010.
- K. Wetchakun, N. Wetchakun, S. Phanichphant, Enhancement of
the photocatalytic performance of Ru-doped TiO2 nanoparticles,
Adv. Mater. Res., 853 (2008) 55–57.
- S. Ozkan, M.W. Kumthekar, G. Karakas, Characterization and
temperature-programmed studies over Pd/TiO2 catalysts for
NO reduction with methane, Catal. Today, 40 (1998) 3–14.
- A. Taicheng, H. Yang, W. Song, G. Li, H. Luo, J.C. William,
Mechanistic considerations for the advanced oxidation treatment
of fluroquinolone pharmaceutical compounds using TiO2
heterogeneous catalysis, J. Phys. Chem. A., 114 (2010) 2569–2575.
- M.S. Lee, S.H. Seong, M. Mohseni, Synthesis of photocatalytic
nanosized TiO2-Ag particles with sol-gel method using
reduction agent, J. Mol. Catal. A: Chem, 242 (2005) 135–140.
- M.B. Muneer, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K.
Sopian, Synthesis and catalytic activity of TiO2 nanoparticles
for photochemical oxidation of concentrated chlorophenols
under direct solar radiation, Int. J. Electrochem. Sci., 7 (2012)
4871–4888.
- M.A. Hema, Y. Arasi, P. Tamilselvi, R. Anbarasan, Titania nanoparticles
synthesized by sol-gel technique, Chem. Sci. Trans., 2
(2013) 239–245.
- P. Makuła, M. Pacia, W. Macyk, How to correctly determine the
band gap energy of modified semiconductor photocatalysts
based on UV–Vis spectra, J. Phys. Chem. Lett., 9 (2018) 6814–6817.
- A.N. Kadam, R.S. Dhabbe, M.R. Kokate, Y.B. Gaikwad,
K.M. Garadkar, Preparation of N doped TiO2 via microwaveassisted
method and its photocatalytic activity for degradation
of Malathion, Spectrochim. Acta, Part A, 133 (2014) 669–676.
- C.C. Wang, C.K. Lee, M.D. Lyu, L.C. Juang, Photocatalytic
degradation of C.I. Basic Violet using TiO2 catalysts supported
by Y. zeolite an investigation of the effects of operational
parameters, Dyes Pigm.,76 (2008) 312–319.
- J. Sun, L. Qiao, S. Sun, G. Wang, Photocatalytic degradation of
Orange G on nitrogen doped TiO2 catalyst under visible light
and sunlight irradiation, J. Hazard. Mater., 155 (2008) 312–319.
- S.M. Santhosh, G.R. Balakrishna, Catalysed degradation of
indanthrene golden Orange RG in sunlight with vanadiumdoped
TiO2, Int. J. Chem. Sci., 6 (2008) 1752–1771.
- H. Chun, W. Yizhong, T. Hongxiao, Destruction of phenol
aqueous solution by photocatalysis or direct photolysis,
Chemosphere, 41 (2000) 1205–1209.
- C. Hu, Y. Tang, J.C. Yu, P.K. Wong, Photocatalytic degradation
of cationic blue X-GRL adsorbed on TiO2/SiO2 photocatalyst,
Appl. Catal., B, 40 (2003) 131–140.
- U.I. Gaya, A.H.J. Abdullah, Heterogeneous photocatalytic
degradation of organic contaminants over titanium dioxide: a
review of fundamentals, progress and problems, J. Photochem.
Photobiol., C, 9 (2008) 1–12.
- I.T. Horvath, Encyclopedia of Catalysis, Wiley, New York, 2003.
- N.J. Peill, M.R. Hoffmann, Mathematical model of a photocatalytic
fiber-optic cable reactor for heterogeneous photocatalysis,
Environ. Sci. Technol., 32 (1998) 398–404.
- I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic
degradation of azo dyes in aqueous solution: kinetic and mechanistic
investigations - a review, Appl. Catal., B, 49 (2004) 1–14.
- Y. Ohko, T. Tatsuma, A. Fujishima, Characterization of TiO2
photocatalysis in the gas phase as a photo electrochemical
system: behavior of salt-modified system, J. Phys. Chem.,
105 (2001) 10016–10021.
- N.M. Mahmoodi, M. Arami, N.Y. Limaee, N.S. Tabrizi, Kinetics
of heterogeneous photocatalytic degradation of reactive dyes
in an immobilized TiO2 photocatalytic reactor, J. Colloid
Interface Sci., 295 (2006) 159–164.
- S. Banerjee, J. Gopal, P. Muraleedharan, A.K. Tyagi, B. Raj,
Physics and Chemistry of photocatalytic titanium dioxide:
visualization of bacterial activity using atomic force microscopy,
Curr. Sci., 90 (2006) 1378–1383.
- S. Baruah, J. Dutta, Nanotechnology applications in pollution
sensing and degradation in agriculture, Environ. Chem. Lett.,
7 (2009) 191–204.
- C.S. Turchi, D.F. Ollis, Photocatalytic degradation of organic
water contaminants: mechanisms involving hydroxyl radical
attack, J. Catal., 122 (1990) 178–192.