References

  1. D.E. Goggin, G.L. Nealon, G.R. Cawthray, A. Scaffidi, M.J. Howard, S.B. Powles, G.R. Flematti, Identity and activity of 2,4-dichlorophenoxyacetic acid metabolites in wild radish (raphanus raphanistrum), J. Agric. Food. Chem., 66 (2018) 13378–13385.
  2. S. Cenkci, M. Yildiz, I.H. Cigerci, A. Bozdag, H. Terzi, E.S.A. Terzi, Evaluation of 2,4-D and dicamba genotoxicity in bean seedlings using comet and RAPD assays, Ecotoxicol. Environ. Saf., 73 (2010) 1558–1564.
  3. P.H. Chen, Y.M. Shi, P.P. Niu, T. Wang, X.Q. Li, H.L. Jiang, W.Q. Zhou, H.Y. Shu, J.Z. Chen, E.Z. Tian, Highly sensitive detection of 4-NP in real water with long stability and high antiinteference ability based on GO-Ag2CrO4/GCE, J. Taiwan Inst. Chem. Eng., 97 (2019) 128–136.
  4. P.H. Chen, Y.M. Shi, X.Q. Li, T. Wang, M.H. Zhou, E.Z. Tian, W.L. Wang, H.L. Jiang, H.Y. Shu, Highly effective detection of 4-nitrophenol by tremella-like indium silver sulfide modified GCE, Int. J. Electrochem. Sci., 13 (2018) 6158–6168.
  5. L. Yang, W. Sun, S. Luo, Y. Luo, White fungus-like mesoporous Bi2S3 ball/TiO2 heterojunction with high photocatalytic efficiency in purifying 2,4-dichlorophenoxyacetic acid/Cr(VI) contaminated water, Appl. Catal., B, 156 (2014) 25–34.
  6. J.Y. Ma, X.C. Quan, Z.F. Yang, A.J. Li, Biodegradation of a mixture of 2,4-dichlorophenoxyacetic acid and multiple chlorophenols by aerobic granules cultivated through plasmid pJP4 mediated bioaugmentation, Chem. Eng. J., 181 (2012) 144–151.
  7. C. Zhu, J. Xu, S. Song, J. Wang, Y. Li, R. Liu, Y. Shen, TiO2 quantum dots loaded sulfonated graphene aerogel for effective adsorption-photocatalysis of PFOA, Sci. Total Environ., 698 (2020) 134275.
  8. O. Garcia, E. Isarain-Chavez, S. Garcia-Segura, E. Brillas, J.M. Peralta-Hernandez, Degradation of 2,4-dichlorophenoxyacetic acid by electro-oxidation and electro-Fenton/BDD processes using a pre-pilot plant, Electrocatalysis, 4 (2013) 224–234.
  9. S. Sanches, M.T. Barreto Crespo, V.J. Pereira, Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes, Water Res., 44 (2010) 1809–1818.
  10. T. Zeng, S.Q. Li, Y. Shen, H.Y. Zhang, H.R. Feng, X.L. Zhang, L.X.Y. Li, Z.W. Cai, S. Song, Sodium doping and 3D honeycomb nanoarchitecture: Key features of covalent triazine-based frameworks (CTF) organocatalyst for enhanced solar-driven advanced oxidation processes, Appl. Catal., B, 257 (2019) 117915.
  11. Y. Shen, C. Zhu, S. Song, T. Zeng, L. Li, Z. Cai, Defect-abundant covalent triazine frameworks as sunlight-driven self-cleaning adsorbents for volatile aromatic pollutants in water, Environ. Sci. Technol., 53 (2019) 9091–9101.
  12. G.H. Zhao, Y.G. Zhang, Y.Z. Lei, B.Y. Lv, J.X. Gao, Y.A. Zhang, D.M. Li, Fabrication and electrochemical treatment application of a novel lead dioxide anode with superhydrophohic surfaces, high oxygen evolution potential, and oxidation capability, Environ. Sci. Technol., 44 (2010) 1754–1759.
  13. E. Guinea, F. Centellas, E. Brillas, P. Canizares, C. Saez, M.A. Rodrigo, Electrocatalytic properties of diamond in the oxidation of a persistant pollutant, Appl. Catal., B, 89 (2009) 645–650.
  14. Z.Q. He, L.Y. Zhan, Q. Wang, S. Song, J.M. Chen, K.R. Zhu, X.H. Xu, W.P. Liu, Increasing the activity and stability of chemideposited palladium catalysts on nickel foam substrate by electrochemical deposition of a middle coating of silver, Sep. Purif. Technol., 80 (2011) 526–532.
  15. Z.Q. He, Q.W. Jian, J.T. Tang, T. Xu, J.L. Xu, Z.S. Yu, J.M. Chen, S. Song, Improvement of electrochemical reductive dechlorination of 2,4-dichlorophenoxyacetic acid using palladium catalysts prepared by a pulsed electrodeposition method, Electrochim. Acta, 222 (2016) 488–498.
  16. R. Mao, X. Zhao, H.C. Lan, H.J. Liu, J.H. Qu, Efficient electrochemical reduction of bromate by a Pd/rGO/CFP electrode with low applied potentials, Appl. Catal., B, 160 (2014) 179–187.
  17. Z.R. Sun, X.F. Wei, X. Hu, K. Wang, H.T. Shen, Electrocatalytic dechlorination of 2,4-dichlorophenol in aqueous solution on palladium loaded meshed titanium electrode modified with polymeric pyrrole and surfactant, Colloids Surf., A, 414 (2012) 314–319.
  18. S. Song, Q.X. Liu, J.H. Fang, W.T. Yu, Enhanced electrocatalytic dechlorination of 2,4-dichlorophenoxyacetic acid on in situ prepared Pd-anchored Ni(OH)2 bifunctional electrodes: synergistic effect between H* formation on Ni(OH)2 and dechlorination steps on Pd, Catal. Sci. Technol., 9 (2019) 5130–5141.
  19. K.R. Zhu, S.A. Baig, J. Xu, T.T. Sheng, X.H. Xu, Electrochemical reductive dechlorination of 2,4-dichlorophenoxyacetic acid using a palladium/nickel foam electrode, Electrochim. Acta, 69 (2012) 389–396.
  20. B.B. Huang, A.A. Isse, C. Durante, C.H. Wei, A. Gennaro, Electrocatalytic properties of transition metals toward reductive dechlorination of polychloroethanes, Electrochim. Acta, 70 (2012) 50–61.
  21. J.S. Zhou, Z.M. Lou, K.L. Yang, J. Xu, Y.Z. Li, Y.L. Liu, S.A. Baig, X.H. Xu, Electrocatalytic dechlorination of 2,4-dichlorobenzoic acid using different carbon-supported palladium moveable catalysts: adsorption and dechlorination activity, Appl. Catal., B, 244 (2019) 215–224.
  22. L. Altamar, L. Fernandez, C. Borras, J. Mostany, H. Carrero, B. Scharifker, Electroreduction of chloroacetic acids (mono-, di- and tri-) at polyNi(II)-tetrasulfonated phthalocyanine gold modified electrode, Sens. Actuators, B, 146 (2010) 103–110.
  23. W.C. Conner, J.L. Falconer, Spillover in heterogeneous catalysis, Chem. Rev., 95 (1995) 759–788.
  24. J.S. Zhou, Z. Lou, J. Xu, X.X. Zhou, K.L. Yang, X.Y. Gao, Y.L. Zhang, X.H. Xu, Enhanced electrocatalytic dechlorination by dispersed and moveable activated carbon supported palladium catalyst, Chem. Eng. J., 358 (2019) 1176–1185.
  25. C. Sun, Z.M. Lou, Y. Liu, R.Q. Fu, X.X. Zhou, Z. Zhang, S.A. Baig, X.H. Xu, Influence of environmental factors on the electrocatalytic dechlorination of 2,4-dichlorophenoxyacetic acid on nTiN doped Pd/Ni foam electrode, Chem. Eng. J., 281 (2015) 183–191.
  26. Q.X. Liu, Y.T. Shen, S. Song, Z.Q. He, Enhanced electrocatalytic hydrodechlorination of 2,4-dichlorophenoxyacetic acid by a Pd-Co3O4/Ni foam electrode, RSC Adv., 9 (2019) 12124–12133.
  27. L.M. Yang, Z.L. Chen, D. Cui, X.B. Luo, B. Liang, L.X. Yang, T. Liu, A.J. Wang, S.L. Luo, Ultrafine palladium nanoparticles supported on 3D self-supported Ni foam for cathodic dechlorination of florfenicol, Chem. Eng. J., 359 (2019) 894–901.
  28. H. Wang, J.L. Wang, Comparative study on electrochemical degradation of 2,4-dichlorophenol by different Pd/C gasdiffusion cathodes, Appl. Catal., B, 89 (2009) 111–117.
  29. P.H. Shao, L. Ding, J.F. Luo, Y. Luo, D. You, Q.G. Zhang, X.B. Luo, Lattice-defect-enhanced adsorption of arsenic on zirconia nanospheres: a combined experimental and theoretical study, ACS Appl. Mater. Interfaces, 11 (2019) 29736–29745.
  30. L.M. Yang, G.P. Yi, Y.A. Hou, H.Y. Cheng, X.B. Luo, S.G. Pavlostathis, S.L. Luo, A.J. Wang, Building electrode with three-dimensional macroporous interface from biocompatible polypyrrole and conductive graphene nanosheets to achieve highly efficient microbial electrocatalysis, Biosens. Bioelectron., 141 (2019) 111444.
  31. F. Yang, Y. Li, T. Liu, K. Xu, L. Zhang, C. Xu, J. Gao, Plasma synthesis of Pd nanoparticles decorated-carbon nanotubes and its application in Suzuki reaction, Chem. Eng. J., 226 (2013) 52–58.
  32. H. Zhao, J. Yang, L. Wang, C. Tian, B. Jiang, H. Fu, Fabrication of a palladium nanoparticle/graphene nanosheet hybrid via sacrifice of a copper template and its application in catalytic oxidation of formic acid, Chem. Commun., 47 (2011) 2014–2016.
  33. J.H. Zhong, A.L. Wang, G.R. Li, J.W. Wang, Y.N. Ou, Y.X. Tong, Co3O4/Ni(OH)2 composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications, J. Mater. Chem., 22 (2012) 5656–5665.
  34. C. Yuan, L. Yang, L. Hou, L. Shen, X. Zhang, X.W. Lou, Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors, Energy Environ. Sci., 5 (2012) 7883–7887.
  35. W.J. Xie, S.H. Yuan, X.H. Mao, W. Hu, P. Liao, M. Tong, A.N. Alshaulabkeh, Electrocatalytic activity of Pd-loaded Ti/TiO2 nanotubes cathode for TCE reduction in groundwater, Water Res., 47 (2013) 3573–3582.
  36. X.Q. Li, Y.M. Shi, P.H. Chen, Y.C. Bai, G.F. Li, H.Y. Shu, D.Z. Chen, S.J. Li, H.L. Jiang, Multifunctional electrochemical application of a novel 3D AgInS2/rGO nanohybrid for electrochemical detection and HER, J. Chem. Technol. Biotechnol., 94 (2019) 3713–3724.
  37. X.F. Wei, X. Wan, Z.R. Sun, J. Miao, R. Zhang, Q. Niu, Understanding electrocatalytic hydrodechlorination of chlorophenols on palladium-modified cathode in aqueous solution, ACS Omega, 3 (2018) 5876–5886.
  38. B. Yang, G. Yu, D.M. Shuai, Electrocatalytic hydrodechlorination of 4-chlorobiphenyl in aqueous solution using palladized nickel foam cathode, Chemosphere, 67 (2007) 1361–1367.
  39. Q. Qiu, W. Jiang, S. Shen, X. Zhu, X. Mu, Numerical investigation on characteristics of falling film in horizontal-tube falling film evaporator, Desal. Wat. Treat., 55 (2015) 3247–3252.
  40. Z. Zheng, Y. Li, J. Li, Y. Zhang, W. Bian, J. Wei, B. Zhao, J. Yang, Effects of carbon sources, COD/NO2–N ratios and temperature on the nitrogen removal performance of the simultaneous partial nitrification, anammox and denitrification (SNAD) biofilm, Water Sci. Technol., 75 (2017) 1712–1721.
  41. A. Brisse, J. Schefold, M. Zahid, High temperature water electrolysis in solid oxide cells, Int. J. Hydrogen Energy, 33 (2008) 5375–5382.
  42. F. He, D.Y. Zhao, Hydrodechlorination of trichloroethene using stabilized Fe-Pd nanoparticles: reaction mechanism and effects of stabilizers, catalysts and reaction conditions, Appl. Catal., B, 84 (2008) 533–540.
  43. J. Xu, L.S. Tan, S.A. Baig, D.L. Wu, X.S. Lv, X.H. Xu, Dechlorination of 2,4-dichlorophenol by nanoscale magnetic Pd/Fe particles: effects of pH, temperature, common dissolved ions and humic acid, Chem. Eng. J., 231 (2013) 26–35.
  44. J.P. Wang, Y.M. Zhang, J. Huang, T. Liu, Kinetic and mechanism study of vanadium acid leaching from black shale using microwave heating method, JOM, 70 (2018) 1031–1036.
  45. V.V. Zhukov, A. Laari, M. Lampinen, T. Koiranen, A mechanistic kinetic model for direct pressure leaching of iron containing sphalerite concentrate, Chem. Eng. Res. Des., 118 (2017) 131–141.
  46. P. Albers, J. Pietsch, S.F. Parker, Poisoning and deactivation of palladium catalysts, J. Mol. Catal. A: Chem., 173 (2001) 275–286.
  47. T.C. Yu, H. Shaw, The effect of sulfur poisoning on methane oxidation over palladium supported on gamma-alumina catalysts, Appl. Catal., B, 18 (1998) 105–114.
  48. T.T. Lim, B.W. Zhu, Effects of anions on the kinetics and reactivity of nanoscale Pd/Fe in trichlorobenzene dechlorination, Chemosphere, 73 (2008) 1471–1477.
  49. C. Schuth, S. Disser, F. Schuth, M. Reinhard, Tailoring catalysts for hydrodechlorinating chlorinated hydrocarbon contaminants in groundwater, Appl. Catal., B, 28 (2000) 147–152.
  50. G.V. Lowry, M. Reinhard, Pd-catalyzed TCE dechlorination in groundwater: solute effects, biological control, and oxidative catalyst regeneration, Environ. Sci. Technol., 34 (2000) 3217–3223.
  51. N.S. Babu, N. Lingaiah, P.S.S. Prasad, Characterization and reactivity of Al2O3 supported Pd-Ni bimetallic catalysts for hydrodechlorination of chlorobenzene, Appl. Catal., B, 111 (2012) 309–316.
  52. G.V. Lowry, M. Reinhard, Pd-catalyzed TCE dechlorination in water: effect of [H2](aq) and H2-utilizing competitive solutes on the TCE dechlorination rate and product distribution, Environ. Sci. Technol., 35 (2001) 696–702.
  53. P.H. Shao, J.Y. Tian, X.G. Duan, Y. Yang, W.X. Shi, X.B. Luo, F.Y. Cui, S.L. Luo, S.B. Wang, Cobalt silicate hydroxide nanosheets in hierarchical hollow architecture with maximized cobalt active site for catalytic oxidation, Chem. Eng. J., 359 (2019) 79–87.
  54. P.H. Shao, J.Y. Tian, F. Yang, X.G. Duan, S.S. Gao, W.X. Shi, X.B. Luo, F.Y. Cui, S.L. Luo, S.B. Wang, Identification and regulation of active sites on nanodiamonds: establishing a highly efficient catalytic system for oxidation of organic contaminants, Adv. Funct. Mater., 28 (2018) 1705295.
  55. W.Y. Fu, K.F. Wang, X.S. Lv, H.L. Fu, X.G. Dong, L. Chen, X.M. Zhang, G.M. Jiang, Palladium nanoparticles assembled on titanium nitride for enhanced electrochemical hydrodechlorination of 2,4-dichlorophenol in water, Chin. J. Catal., 39 (2018) 693–700.
  56. J. Xu, Z. Cao, X. Liu, H. Zhao, X. Xiao, J.P. Wu, X.H. Xu, J.L. Zhou, Preparation of functionalized Pd/Fe-Fe3O4@MWCNTs nanomaterials for aqueous 2,4-dichlorophenol removal: Interactions, influence factors, and kinetics, J. Hazard. Mater., 317 (2016) 656–666.