References
- D.E. Goggin, G.L. Nealon, G.R. Cawthray, A. Scaffidi,
M.J. Howard, S.B. Powles, G.R. Flematti, Identity and activity
of 2,4-dichlorophenoxyacetic acid metabolites in wild radish
(raphanus raphanistrum), J. Agric. Food. Chem., 66 (2018)
13378–13385.
- S. Cenkci, M. Yildiz, I.H. Cigerci, A. Bozdag, H. Terzi,
E.S.A. Terzi, Evaluation of 2,4-D and dicamba genotoxicity
in bean seedlings using comet and RAPD assays, Ecotoxicol.
Environ. Saf., 73 (2010) 1558–1564.
- P.H. Chen, Y.M. Shi, P.P. Niu, T. Wang, X.Q. Li, H.L. Jiang,
W.Q. Zhou, H.Y. Shu, J.Z. Chen, E.Z. Tian, Highly sensitive
detection of 4-NP in real water with long stability and high antiinteference
ability based on GO-Ag2CrO4/GCE, J. Taiwan Inst.
Chem. Eng., 97 (2019) 128–136.
- P.H. Chen, Y.M. Shi, X.Q. Li, T. Wang, M.H. Zhou, E.Z. Tian,
W.L. Wang, H.L. Jiang, H.Y. Shu, Highly effective detection of
4-nitrophenol by tremella-like indium silver sulfide modified
GCE, Int. J. Electrochem. Sci., 13 (2018) 6158–6168.
- L. Yang, W. Sun, S. Luo, Y. Luo, White fungus-like mesoporous
Bi2S3 ball/TiO2 heterojunction with high photocatalytic efficiency
in purifying 2,4-dichlorophenoxyacetic acid/Cr(VI)
contaminated water, Appl. Catal., B, 156 (2014) 25–34.
- J.Y. Ma, X.C. Quan, Z.F. Yang, A.J. Li, Biodegradation of a mixture
of 2,4-dichlorophenoxyacetic acid and multiple chlorophenols
by aerobic granules cultivated through plasmid pJP4 mediated
bioaugmentation, Chem. Eng. J., 181 (2012) 144–151.
- C. Zhu, J. Xu, S. Song, J. Wang, Y. Li, R. Liu, Y. Shen, TiO2
quantum dots loaded sulfonated graphene aerogel for effective
adsorption-photocatalysis of PFOA, Sci. Total Environ.,
698 (2020) 134275.
- O. Garcia, E. Isarain-Chavez, S. Garcia-Segura, E. Brillas,
J.M. Peralta-Hernandez, Degradation of 2,4-dichlorophenoxyacetic
acid by electro-oxidation and electro-Fenton/BDD processes
using a pre-pilot plant, Electrocatalysis, 4 (2013) 224–234.
- S. Sanches, M.T. Barreto Crespo, V.J. Pereira, Drinking water
treatment of priority pesticides using low pressure UV photolysis
and advanced oxidation processes, Water Res., 44 (2010)
1809–1818.
- T. Zeng, S.Q. Li, Y. Shen, H.Y. Zhang, H.R. Feng, X.L. Zhang,
L.X.Y. Li, Z.W. Cai, S. Song, Sodium doping and 3D honeycomb
nanoarchitecture: Key features of covalent triazine-based
frameworks (CTF) organocatalyst for enhanced solar-driven
advanced oxidation processes, Appl. Catal., B, 257 (2019)
117915.
- Y. Shen, C. Zhu, S. Song, T. Zeng, L. Li, Z. Cai, Defect-abundant
covalent triazine frameworks as sunlight-driven self-cleaning
adsorbents for volatile aromatic pollutants in water, Environ.
Sci. Technol., 53 (2019) 9091–9101.
- G.H. Zhao, Y.G. Zhang, Y.Z. Lei, B.Y. Lv, J.X. Gao, Y.A. Zhang,
D.M. Li, Fabrication and electrochemical treatment application
of a novel lead dioxide anode with superhydrophohic surfaces,
high oxygen evolution potential, and oxidation capability,
Environ. Sci. Technol., 44 (2010) 1754–1759.
- E. Guinea, F. Centellas, E. Brillas, P. Canizares, C. Saez,
M.A. Rodrigo, Electrocatalytic properties of diamond in the
oxidation of a persistant pollutant, Appl. Catal., B, 89 (2009)
645–650.
- Z.Q. He, L.Y. Zhan, Q. Wang, S. Song, J.M. Chen, K.R. Zhu,
X.H. Xu, W.P. Liu, Increasing the activity and stability of chemideposited
palladium catalysts on nickel foam substrate by
electrochemical deposition of a middle coating of silver, Sep.
Purif. Technol., 80 (2011) 526–532.
- Z.Q. He, Q.W. Jian, J.T. Tang, T. Xu, J.L. Xu, Z.S. Yu, J.M.
Chen, S. Song, Improvement of electrochemical reductive
dechlorination of 2,4-dichlorophenoxyacetic acid using palladium
catalysts prepared by a pulsed electrodeposition method,
Electrochim. Acta, 222 (2016) 488–498.
- R. Mao, X. Zhao, H.C. Lan, H.J. Liu, J.H. Qu, Efficient
electrochemical reduction of bromate by a Pd/rGO/CFP electrode
with low applied potentials, Appl. Catal., B, 160 (2014)
179–187.
- Z.R. Sun, X.F. Wei, X. Hu, K. Wang, H.T. Shen, Electrocatalytic
dechlorination of 2,4-dichlorophenol in aqueous solution on
palladium loaded meshed titanium electrode modified with
polymeric pyrrole and surfactant, Colloids Surf., A, 414 (2012)
314–319.
- S. Song, Q.X. Liu, J.H. Fang, W.T. Yu, Enhanced electrocatalytic
dechlorination of 2,4-dichlorophenoxyacetic acid on in situ
prepared Pd-anchored Ni(OH)2 bifunctional electrodes:
synergistic
effect between H* formation on Ni(OH)2 and
dechlorination steps on Pd, Catal. Sci. Technol., 9 (2019)
5130–5141.
- K.R. Zhu, S.A. Baig, J. Xu, T.T. Sheng, X.H. Xu, Electrochemical
reductive dechlorination of 2,4-dichlorophenoxyacetic acid
using a palladium/nickel foam electrode, Electrochim. Acta,
69 (2012) 389–396.
- B.B. Huang, A.A. Isse, C. Durante, C.H. Wei, A. Gennaro,
Electrocatalytic properties of transition metals toward reductive
dechlorination of polychloroethanes, Electrochim. Acta,
70 (2012) 50–61.
- J.S. Zhou, Z.M. Lou, K.L. Yang, J. Xu, Y.Z. Li, Y.L. Liu, S.A. Baig,
X.H. Xu, Electrocatalytic dechlorination of 2,4-dichlorobenzoic
acid using different carbon-supported palladium moveable
catalysts: adsorption and dechlorination activity, Appl. Catal.,
B, 244 (2019) 215–224.
- L. Altamar, L. Fernandez, C. Borras, J. Mostany, H. Carrero,
B. Scharifker, Electroreduction of chloroacetic acids (mono-,
di- and tri-) at polyNi(II)-tetrasulfonated phthalocyanine gold
modified electrode, Sens. Actuators, B, 146 (2010) 103–110.
- W.C. Conner, J.L. Falconer, Spillover in heterogeneous catalysis,
Chem. Rev., 95 (1995) 759–788.
- J.S. Zhou, Z. Lou, J. Xu, X.X. Zhou, K.L. Yang, X.Y. Gao,
Y.L. Zhang, X.H. Xu, Enhanced electrocatalytic dechlorination
by dispersed and moveable activated carbon supported
palladium catalyst, Chem. Eng. J., 358 (2019) 1176–1185.
- C. Sun, Z.M. Lou, Y. Liu, R.Q. Fu, X.X. Zhou, Z. Zhang,
S.A. Baig, X.H. Xu, Influence of environmental factors on the
electrocatalytic dechlorination of 2,4-dichlorophenoxyacetic
acid on nTiN doped Pd/Ni foam electrode, Chem. Eng. J.,
281 (2015) 183–191.
- Q.X. Liu, Y.T. Shen, S. Song, Z.Q. He, Enhanced electrocatalytic
hydrodechlorination of 2,4-dichlorophenoxyacetic acid by a
Pd-Co3O4/Ni foam electrode, RSC Adv., 9 (2019) 12124–12133.
- L.M. Yang, Z.L. Chen, D. Cui, X.B. Luo, B. Liang, L.X. Yang,
T. Liu, A.J. Wang, S.L. Luo, Ultrafine palladium nanoparticles
supported on 3D self-supported Ni foam for cathodic dechlorination
of florfenicol, Chem. Eng. J., 359 (2019) 894–901.
- H. Wang, J.L. Wang, Comparative study on electrochemical
degradation of 2,4-dichlorophenol by different Pd/C gasdiffusion
cathodes, Appl. Catal., B, 89 (2009) 111–117.
- P.H. Shao, L. Ding, J.F. Luo, Y. Luo, D. You, Q.G. Zhang,
X.B. Luo, Lattice-defect-enhanced adsorption of arsenic on
zirconia nanospheres: a combined experimental and theoretical
study, ACS Appl. Mater. Interfaces, 11 (2019) 29736–29745.
- L.M. Yang, G.P. Yi, Y.A. Hou, H.Y. Cheng, X.B. Luo,
S.G. Pavlostathis, S.L. Luo, A.J. Wang, Building electrode with
three-dimensional macroporous interface from biocompatible
polypyrrole and conductive graphene nanosheets to achieve
highly efficient microbial electrocatalysis, Biosens. Bioelectron.,
141 (2019) 111444.
- F. Yang, Y. Li, T. Liu, K. Xu, L. Zhang, C. Xu, J. Gao, Plasma
synthesis of Pd nanoparticles decorated-carbon nanotubes and
its application in Suzuki reaction, Chem. Eng. J., 226 (2013)
52–58.
- H. Zhao, J. Yang, L. Wang, C. Tian, B. Jiang, H. Fu, Fabrication
of a palladium nanoparticle/graphene nanosheet hybrid via
sacrifice of a copper template and its application in catalytic
oxidation of formic acid, Chem. Commun., 47 (2011)
2014–2016.
- J.H. Zhong, A.L. Wang, G.R. Li, J.W. Wang, Y.N. Ou, Y.X. Tong,
Co3O4/Ni(OH)2 composite mesoporous nanosheet networks
as a promising electrode for supercapacitor applications,
J. Mater. Chem., 22 (2012) 5656–5665.
- C. Yuan, L. Yang, L. Hou, L. Shen, X. Zhang, X.W. Lou, Growth
of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for
high-performance electrochemical capacitors, Energy Environ.
Sci., 5 (2012) 7883–7887.
- W.J. Xie, S.H. Yuan, X.H. Mao, W. Hu, P. Liao, M. Tong,
A.N. Alshaulabkeh, Electrocatalytic activity of Pd-loaded Ti/TiO2 nanotubes cathode for TCE reduction in groundwater,
Water Res., 47 (2013) 3573–3582.
- X.Q. Li, Y.M. Shi, P.H. Chen, Y.C. Bai, G.F. Li, H.Y. Shu,
D.Z. Chen, S.J. Li, H.L. Jiang, Multifunctional electrochemical
application of a novel 3D AgInS2/rGO nanohybrid for electrochemical
detection and HER, J. Chem. Technol. Biotechnol.,
94 (2019) 3713–3724.
- X.F. Wei, X. Wan, Z.R. Sun, J. Miao, R. Zhang, Q. Niu,
Understanding electrocatalytic hydrodechlorination of chlorophenols
on palladium-modified cathode in aqueous solution,
ACS Omega, 3 (2018) 5876–5886.
- B. Yang, G. Yu, D.M. Shuai, Electrocatalytic hydrodechlorination
of 4-chlorobiphenyl in aqueous solution using palladized
nickel foam cathode, Chemosphere, 67 (2007) 1361–1367.
- Q. Qiu, W. Jiang, S. Shen, X. Zhu, X. Mu, Numerical investigation
on characteristics of falling film in horizontal-tube falling film
evaporator, Desal. Wat. Treat., 55 (2015) 3247–3252.
- Z. Zheng, Y. Li, J. Li, Y. Zhang, W. Bian, J. Wei, B. Zhao, J. Yang,
Effects of carbon sources, COD/NO2––N ratios and temperature
on the nitrogen removal performance of the simultaneous
partial nitrification, anammox and denitrification (SNAD)
biofilm, Water Sci. Technol., 75 (2017) 1712–1721.
- A. Brisse, J. Schefold, M. Zahid, High temperature water
electrolysis in solid oxide cells, Int. J. Hydrogen Energy,
33 (2008) 5375–5382.
- F. He, D.Y. Zhao, Hydrodechlorination of trichloroethene
using stabilized Fe-Pd nanoparticles: reaction mechanism and
effects of stabilizers, catalysts and reaction conditions, Appl.
Catal., B, 84 (2008) 533–540.
- J. Xu, L.S. Tan, S.A. Baig, D.L. Wu, X.S. Lv, X.H. Xu,
Dechlorination of 2,4-dichlorophenol by nanoscale magnetic
Pd/Fe particles: effects of pH, temperature, common dissolved
ions and humic acid, Chem. Eng. J., 231 (2013) 26–35.
- J.P. Wang, Y.M. Zhang, J. Huang, T. Liu, Kinetic and mechanism
study of vanadium acid leaching from black shale using
microwave heating method, JOM, 70 (2018) 1031–1036.
- V.V. Zhukov, A. Laari, M. Lampinen, T. Koiranen, A mechanistic
kinetic model for direct pressure leaching of iron containing
sphalerite concentrate, Chem. Eng. Res. Des., 118 (2017)
131–141.
- P. Albers, J. Pietsch, S.F. Parker, Poisoning and deactivation
of palladium catalysts, J. Mol. Catal. A: Chem., 173 (2001)
275–286.
- T.C. Yu, H. Shaw, The effect of sulfur poisoning on methane
oxidation over palladium supported on gamma-alumina
catalysts, Appl. Catal., B, 18 (1998) 105–114.
- T.T. Lim, B.W. Zhu, Effects of anions on the kinetics and
reactivity of nanoscale Pd/Fe in trichlorobenzene dechlorination,
Chemosphere, 73 (2008) 1471–1477.
- C. Schuth, S. Disser, F. Schuth, M. Reinhard, Tailoring catalysts
for hydrodechlorinating chlorinated hydrocarbon contaminants
in groundwater, Appl. Catal., B, 28 (2000) 147–152.
- G.V. Lowry, M. Reinhard, Pd-catalyzed TCE dechlorination in
groundwater: solute effects, biological control, and oxidative
catalyst regeneration, Environ. Sci. Technol., 34 (2000) 3217–3223.
- N.S. Babu, N. Lingaiah, P.S.S. Prasad, Characterization and
reactivity of Al2O3 supported Pd-Ni bimetallic catalysts for
hydrodechlorination of chlorobenzene, Appl. Catal., B, 111
(2012) 309–316.
- G.V. Lowry, M. Reinhard, Pd-catalyzed TCE dechlorination in
water: effect of [H2](aq) and H2-utilizing competitive solutes
on the TCE dechlorination rate and product distribution,
Environ. Sci. Technol., 35 (2001) 696–702.
- P.H. Shao, J.Y. Tian, X.G. Duan, Y. Yang, W.X. Shi, X.B. Luo,
F.Y. Cui, S.L. Luo, S.B. Wang, Cobalt silicate hydroxide
nanosheets in hierarchical hollow architecture with maximized
cobalt active site for catalytic oxidation, Chem. Eng. J., 359 (2019)
79–87.
- P.H. Shao, J.Y. Tian, F. Yang, X.G. Duan, S.S. Gao, W.X. Shi,
X.B. Luo, F.Y. Cui, S.L. Luo, S.B. Wang, Identification and
regulation of active sites on nanodiamonds: establishing a
highly efficient catalytic system for oxidation of organic contaminants,
Adv. Funct. Mater., 28 (2018) 1705295.
- W.Y. Fu, K.F. Wang, X.S. Lv, H.L. Fu, X.G. Dong, L. Chen,
X.M. Zhang, G.M. Jiang, Palladium nanoparticles assembled
on titanium nitride for enhanced electrochemical hydrodechlorination
of 2,4-dichlorophenol in water, Chin. J. Catal.,
39 (2018) 693–700.
- J. Xu, Z. Cao, X. Liu, H. Zhao, X. Xiao, J.P. Wu, X.H. Xu, J.L.
Zhou, Preparation of functionalized Pd/Fe-Fe3O4@MWCNTs
nanomaterials for aqueous 2,4-dichlorophenol removal: Interactions,
influence factors, and kinetics, J. Hazard. Mater., 317
(2016) 656–666.