References

  1. A.M. Bernardes, M.A.S. Rodrigues, J.Z. Ferreira, Eds., Electrodialysis and Water Reuse: Novel Approaches, Springer-Verlag, Berlin, Heidelberg, 2014.
  2. H. Strathmann, Ion-Exchange Membrane processes: Their Principle and Practical Applications, Balaban Desalination Publications, Hopkinton, MA, 2016.
  3. L. Alvarado, A. Chen, Electrodeionization: principles, strategies and applications, Electrochim. Acta, 132 (2014) 583–597.
  4. J. Wood, J. Gifford, J. Arba, M. Shaw, Production of ultrapure water by continuous electrodeionization, Desalination, 250 (2010) 973–976.
  5. P.B. Spoor, L. Grabovska, L. Koene, L.J. Janssen, W.R. ter Veen, Pilot scale deionisation of a galvanic nickel solution using a hybrid ion-exchange/electrodialysis system, Chem. Eng. J., 89 (2002) 193–202.
  6. Y.S. Dzyaz’ko, L.M. Rozhdestvenskaya, A.V. Pal’chik, Recovery of nickel ions from dilute solutions by electrodialysis combined with ion exchange, Russ. J. Appl. Chem., 75 (2005) 414–421.
  7. V.V. Nikonenko, A.V. Kovalenko, M.K. Urtenov, N.D. Pismenskaya, J. Han, Ph. Sistat, G. Pourcelly, Desalination at overlimiting currents: state-of-the-art and perspectives, Desalination, 342 (2014) 85–106.
  8. V.V. Nikonenko, N.D. Pismenskaya, E.I. Belova, Ph. Sistat, P. Huguet, G. Pourcelly, Ch. Larchet, Intensive current transfer in membrane systems: modelling, mechanisms and application in electrodialysis, Adv. Colloid Interface Sci., 160 (2010) 101–123.
  9. V.I. Zabolotskiy, A.Yu. But, V.I. Vasil’eva, E.M. Akberova, S.S. Melnikov, Ion transport and electrochemical stability of strongly basic anion-exchange membranes under high current electrodialysis conditions, J. Membr. Sci., 526 (2017) 60–72.
  10. T. Sata, Ion Exchange Membranes. Preparation, Characterization, Modification and Application, RSC, Cambridge, 2004.
  11. D.M. Davenport, A. Deshmukh, J.R. Werber, M. Elimelech, High-pressure reverse osmosis for energy-efficient hypersaline brine desalination: current status, design considerations, and research needs, Environ. Sci. Technol. Lett., 5 (2018) 467–475.
  12. V.G. Good, ed., Sustainable Desalination Handbook, Plant Selection, Design and Implementation, Butterworth-Heinemann, Oxford, 2018.
  13. Y. Oren, Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review), Desalination, 228 (2008) 10–29.
  14. F.A. Al Marzooqi, A.A. Al Ghaferi, I. Saadat, N. Hilal, Application of capacitive deionisation in water desalination: a review, Desalination, 342 (2014) 3–15.
  15. Yu.M. Volfkovich, D.A. Bograchev, A.A. Mikhalin, A.Yu. Rychagov, V.E. Sosenkin, D. Park, Capacitive deionization of aqueous solutions: modeling and experiments, Desal. Wat. Treat., 69 (2017) 130–141.
  16. Yu. M. Volfkovich, D.A. Bograchev, A.A. Mikhalin, A.Yu. Rychagov, V.E. Sosenkin, V.V. Milyutin, D. Park. Electrodes based on carbon nanomaterials: structure, properties and application to capacitive deionization in static cells, Springer Proceedings in Physics, 210 (2018) 127–146.
  17. Yu.M. Volfkovich, А.Yu. Rychagov, А.А. Mikhalin, М.М. Kardash, N.А. Kononenko, D.V. Ainetdinov, S.A. Shkirskaya, V.Е. Sosenkin, Capacitive deionization of water using mosaic membrane, Desalination, 426 (2018) 1–10.
  18. R. Zhao, P.M. Biesheuvel, A. van der Wal, Energy consumption and constant current operation in membrane capacitive deionization, Energy Environ. Sci., 5 (2012) 9520–9527.
  19. B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer, New York, 1999.
  20. V.S. Bagotsky, A.M. Skundin, Yu.M. Volfkovich, Electrochemical Power Sources: Batteries, Fuel Cells, Supercapacitors, John Wiley & Sons Inc., New Jersey, 2015.
  21. M.D. Andelman, Charge Barrier Flow-Through Capacitor, CA Patent 2444390, 2002.
  22. J.-B. Lee, K.-K. Park, H.-M. Eum, C.W. Lee, Desalination of a thermal power plant wastewater by membrane capacitive deionization, Desalination, 196 (2006) 125–134.
  23. P.M. Biesheuvel, A. van der Wal, Membrane capacitive deionization, J. Membr. Sci., 346 (2010) 256–262.
  24. M.A. Anderson, A.L. Cudero, J. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: will it compete?, Electrochim. Acta, 55 (2010) 3845–3856.
  25. W. Tang, D. He, C. Zhang, T.D. Waite, Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI), Water Res., 121 (2017) 302–310.
  26. A. Hassanvand, G.Q. Chen, P.A. Webley, S.E. Kentish, Improvement of MCDI operation and design through experiment and modelling: regeneration with brine and optimum residence time, Desalination, 417 (2017) 36–51.
  27. J.-S. Kim, J.-H. Choi, Fabrication and characterization of a carbon electrode coated with cation-exchange polymer for the membrane capacitive deionization applications, J. Membr. Sci., 355 (2010) 85–90.
  28. H. Li, Y. Gao, L. Pan, Y. Zhang, Y. Chen, Z. Sun, Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes, Water Res., 42 (2008) 4923–4928.
  29. J.-H. Lee, J.-H. Choi, The production of ultrapure water by membrane capacitive deionization (MCDI) technology, J. Membr. Sci., 409–410 (2012) 251–256.
  30. H. Li, L. Zou, Ion-exchange membrane capacitive deionization: a new strategy for brackish water desalination, Desalination, 275 (2011) 62–66.
  31. Y.-J. Kim, J.-H. Choi, Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer, Water Res., 44 (2010) 990–996.
  32. P.M. Biesheuvel, R. Zhao, S. Porada, A. van der Wal, Theory of membrane capacitive deionization including the effect of the electrode pore space, J. Colloid Interface Sci., 360 (2011) 239–248.
  33. C. Kim, P. Srimuk, J. Lee, S. Fleischmann, M. Aslan, V. Presser, Influence of pore structure and cell voltage of activated carbon cloth as a versatile electrode material for capacitive deionization, Carbon, 122 (2017) 329–335.
  34. J. Cao, Y. Wang, C. Chen, F. Yu, J. Ma, A Comparison of graphene hydrogels modified with single-walled/multi-walled carbon nanotubes as electrode materials for capacitive deionization, J. Colloid Interface Sci., 518 (2018) 69–75.
  35. Y.M. Volfkovich, D.A. Bograchev, A.M. Mikhalin, A.Yu. Rychagov, V.E. Sosenkin, V.V. Milyutin, D. Park, Electrodes Based on Carbon Nanomaterials: Structure, Properties and Application to Capacitive Deionization in Static Cells, Chapter 9, O. Fesenko, L. Fesenko, Eds., Nano-Optics, Nanophotonics, Nanomaterials, and Their Applications, Springer, 2018, pp. 127–139.
  36. J. Feng, Z. Yang, S. Hou, M. Li, R. Lv, F. Kang, Z-H. Huang, GO/auricularia - derived hierarchical porous carbon used for capacitive deionization with high performance, Colloids Surf., A, 547 (2018) 134–140.
  37. M.S. Gaikwad, C. Balomajumder, Polymer coated capacitive deionization electrode for desalination: a mini review, Electrochem. Energy Technol., 2 (2016) 1–5.
  38. Y. Liu, C. Nie, X. Liu, X. Xu, Z. Sun, L. Pan, Review on carbonbased composite materials for capacitive deionization, RSC Adv., 5 (2015) 15205–15225.
  39. D. Zhang, X. Wen, L. Shi, T. Yan, J. Zhang, Enhanced capacitive deionization of graphene/mesoporous carbon composites, Nanoscale, 4 (2012) 5440–5446.
  40. M.T.Z. Myint, J. Dutta, Fabrication of zinc oxide nanorods modified activated carbon cloth electrode for desalination of brackish water using capacitive deionization approach, Desalination, 305 (2012) 24–30.
  41. Y. Bian, P. Liang, X. Yang, Y. Jiang, C. Zhang, X. Huang, Using activated carbon fiber separators to enhance the desalination rate of membrane capacitive deionization, Desalination, 381 (2016) 95–99.
  42. Yu.M. Volfkovich, A.A. Mikhalin, A.Y. Rychagov, Surface conductivity measurements for porous carbon electrodes, Russ. J. Electrochem., 49 (2013) 594–598.
  43. Yu.M. Volfkovich, D.A. Bograchev, A.Yu. Rychagov, V.E. Sosenkin, M.Yu. Chaika, Supercapacitors with carbon electrodes. Energy efficiency: modeling and experimental verification, J. Solid State Electrochem., 19 (2015) 1–9.
  44. N.P. Berezina, N.A. Kononenko, Yu.M. Volfkovich, Yu. G. Freidlin, L.G. Chernoskutova, Physico-chemical properties of aniono-cationo exchange membranes of mosaic structure, J. Soviet Electrochem., 29 (1989) 912–915.
  45. J. Mora-Gomez, M. Garcia-Gabaldon, M.C. Marti-Catalayud, S. Mestre, V. Perez-Herranz, Anion transport through ceramic electrodialysis membranes made with hydrated cerium dioxide, J. Am. Ceram. Soc., 100 (2017) 4180–4189.
  46. Y.S. Dzyazko, A.S. Rudenko, Y.M. Yukhin, A.V. Palchik, V.N. Belyakov, Modification of ceramic membranes with inorganic sorbents. Application to electrodialytic recovery of Cr(VI) anions from multicomponent solution, Desalination, 342 (2014) 52–60.
  47. R. Pang, X. Li, J. Li, Z. Lu, X. Sun, L. Wang, Preparation and characterization of ZrO2/PES hybrid ultrafiltration membrane with uniform ZrO2 nanoparticles, Desalination, 332 (2014) 60–66.
  48. Y.S. Dzyazko, L.M. Rozhdestvenskaya, Y.G. Zmievskii, A.I. Vilenskii, V.G. Myronchuk, L.V. Kornienko, S.L. Vasilyuk, N.N. Tsyba, Organic-inorganic materials containing nanoparticles of zirconium hydrophosphate for baromembrane separation, Nanoscale Res. Lett., 10 (2015) 1–11.
  49. R.J. Phillips, W.M. Deen, J.F. Brady, Hindered transport of spherical macromolecules in fibrous membranes and gels, AIChE J., 35 (1989) 1761–1769.
  50. A.I. Gopalan, K.-P. Lee, K.M. Manesha, P. Santhosh, Poly (vinylidene fluoride)–polydiphenylamine composite electrospun membrane as high-performance polymer electrolyte for lithium batteries, J. Membr. Sci., 318 (2008) 422–428.
  51. M.M. Kardash, Yu.M. Vol’fkovich, I.A. Tyurin, N.A. Kononenko, D.V. Oleinik, M.A. Chernyaeva, Effect of process parameters of manufacturing of composite fibrous membranes on their structure and ion selectivity, Petrol. Chem., 53 (2013) 482–488.
  52. M.M. Kardash, D.V. Terin, Search for a technological invariant and evolution of the structure – property relation for Polikon materials, Petrol. Chem., 56 (2016) 413–422.
  53. M.M. Kardash, N.B. Fedorchenko, O.V. Epancheva, Structural features of composite chemisorption fibre materials from polycondensation filling, Fibre Chem., 34 (2002) 466–469.
  54. http://www.kynol.de/pdf/
  55. Yu.M. Volfkovich, V.S. Bagotzky, The method of standard porosimetry 2. Investigation of the formation of porous structures, J. Power Sources, 48 (1994) 339–348.
  56. Yu.M. Volfkovich, A.V. Sakars, A.A. Volinsky, Application of the standard porosimetry method for nanomaterials, Int. J. Nanotechnol., 2 (2005) 292–302.
  57. Yu.S. Dzyazko, L.N. Ponomaryova, Yu.M. Volfkovich, V.E. Sosenkin, V.N. Belyakov, Polymer ion-exchangers modified with zirconium hydrophosphate for removal of Cd2+ ions from diluted solutions, Sep. Sci. Technol., 48 (2013) 2140–2149.
  58. Yu.M. Volfkovich, A.N. Filippov, V.S. Bagotsky, Structural Properties of Porous Materials and Powders Used in Different Fields of Science and Technology, Springer, 2014.
  59. N.A. Kononenko, M.A. Fomenko, Yu.M. Volfkovich, Structure of perfluorinated membranes investigated by method of standard contact porosimetry, Adv. Colloid Interface Sci., 222 (2015) 425–435.
  60. J. Rouquerol, G. Baron, R. Denoyel, H. Giesche, J. Groen, P. Klobes, P. Levitz, A.V. Neimark, S. Rigby, R. Skudas, K. Sing, M. Thommes, K. Unger, Liquid intrusion and alternative methods for the characterization of macroporous materials (IUPAC Technical Report), Pure Appl. Chem., 84 (2011) 107–136.
  61. A.B. Yaroslavtsev, Ed., Membranes and Membrane Technologies, Nauchnii Mir, Moscow, 2013 [in Russian].
  62. N.P. Gnusin, N.P. Berezina, O.A. Dyomina, N.A. Kononenko, Physicochemical principles of testing ion-exchange membranes, Russ. J. Electrochem., 32 (1996) 154–163.
  63. Yu.M. Volfkovich, D.A. Bograchev, A.A. Mikhailin, V.S. Bagotzky, Supercapacitor carbon electrodes with high capacitance, J. Solid State Electrochem., 18 (2014) 1351–1363.
  64. J. Kozeny, Uber die kapillare Leitung des Wassers im Boden, Aufstieg Versickerung und Anwendung auf die Bewasserung. Sitzungsber Akad. Wiss., Wien, 136 (1927) 271–306.
  65. J. Kang, T. Kim, H. Shin, J. Lee, J.-I. Ha, J. Yoon, Direct energy recovery system for membrane capacitive deionization, Desalination, 398 (2016) 144–150.