References

  1. K. Sheth, M.D. Desai, M. Patel, K. Sheth, M.D. Desai, M. Patel, A study on characterization and treatment of laundry effluent, Int. J. Innovative Res. Sci. Technol., 4 (2017) 50–55.
  2. C. Yun, D. Kim, W. Kim, D. Son, D. Chang, J. Kim, Y. Bae, H. Bae, Y. Sunwoo, M. Kwak, Application and assessment of enhanced electrolytic process for laundry wastewater treatment, Int. J. Electrochem. Sci., 9 (2014) 1522–1536.
  3. O. Turkay, S. Barışçı, M. Sillanpää, E-peroxone process for the treatment of laundry wastewater: a case study, J. Environ. Chem. Eng., 5 (2017) 4282–4290.
  4. F. Janpoor, A. Torabian, V. Khatibikamal, Treatment of laundry wastewater by electrocoagulation, J. Chem. Technol. Biotechnol., 86 (2011) 1113–1120.
  5. D.I. Kern, R.d.O. Schwaickhardt, G. Mohr, E.A. Lobo, L.T. Kist, Ê.L. Machado, Toxicity and genotoxicity of hospital laundry wastewaters treated with photocatalytic ozonation, Sci. Total Environ., 443 (2013) 566–572.
  6. J.K. Braga, M.B.A. Varesche, Commercial laundry water characterisation, Am. J. Anal. Chem., 5 (2014) 8.
  7. F.-J. Zhu, W.-L. Ma, T.-F. Xu, Y. Ding, X. Zhao, W.-L. Li, L.-Y. Liu, W.-W. Song, Y.-F. Li, Z.-F. Zhang, Removal characteristic of surfactants in typical industrial and domestic wastewater treatment plants in Northeast China, Ecotoxicol. Environ. Saf., 153 (2018) 84–90.
  8. S. Bering, J. Mazur, K. Tarnowski, M. Janus, S. Mozia, A.W. Morawski, The application of moving bed bio-reactor (MBBR) in commercial laundry wastewater treatment, Sci. Total Environ., 627 (2018) 1638–1643.
  9. C.-T. Wang, W.-L. Chou, Y.-M. Kuo, Removal of COD from laundry wastewater by electrocoagulation/electroflotation, J. Hazard. Mater., 164 (2009) 81–86.
  10. F.J. Beltran, J.F. Garcia-Araya, P.M. Alvarez, Sodium dodecylbenzenesulfonate removal from water and wastewater. 1. Kinetics of decomposition by ozonation, Ind. Eng. Chem. Res., 39 (2000) 2214–2220.
  11. S. Šostar-Turk, I. Petrinić, M. Simonič, Laundry wastewater treatment using coagulation and membrane filtration, Resour. Conserv. Recycl., 44 (2005) 185–196.
  12. X. Shang, H.-C. Kim, J.-H. Huang, B.A. Dempsey, Coagulation strategies to decrease fouling and increase critical flux and contaminant removal in microfiltration of laundry wastewater, Sep. Purif. Technol., 147 (2015) 44–50.
  13. E. Brillas, R. Sauleda, J. Casado, Peroxi-coagulation of aniline in acidic medium using an oxygen diffusion cathode, J. Electrochem. Soc., 144 (1997) 2374–2379.
  14. E. Brillas, R. Sauleda, J. Casado, Degradation of 4-chlorophenol by anodic oxidation, electro-Fenton, photoelectro-Fenton, and peroxi-coagulation processes, J. Electrochem. Soc, 145 (1998) 759–765.
  15. A. Kumar, P. Nidheesh, M.S. Kumar, Composite wastewater treatment by aerated electrocoagulation and modified peroxicoagulation processes, Chemosphere, 205 (2018) 587–593.
  16. S. Vasudevan, An efficient removal of phenol from water by peroxi-electrocoagulation processes, J. Water Process Eng., 2 (2014) 53–57.
  17. E. Brillas, B. Boye, M.A. Banos, J.C. Calpe, J.A. Garrido, Electrochemical degradation of chlorophenoxy and chlorobenzoic herbicides in acidic aqueous medium by the peroxicoagulation method, Chemosphere, 51 (2003) 227–235.
  18. B. Boye, E. Brillas, M.M. Dieng, Electrochemical degradation of the herbicide 4-chloro-2-methylphenoxyacetic acid in aqueous medium by peroxi-coagulation and photoperoxi-coagulation, J. Water Process Eng., 540 (2003) 25–34.
  19. G. Ren, M. Zhou, P. Su, L. Liang, W. Yang, E. Mousset, Highly energy-efficient removal of acrylonitrile by peroxi-coagulation with modified graphite felt cathode: Influence factors, possible mechanism, J. Water Process. Eng., 343 (2018) 467–476.
  20. D. Salari, A. Niaei, A. Khataee, M. Zarei, Electrochemical treatment of dye solution containing CI Basic Yellow 2 by the peroxi-coagulation method and modeling of experimental results by artificial neural networks, J. Electroanal. Chem., 629 (2009) 117–125.
  21. M. Zarei, A. Niaei, D. Salari, A. Khataee, Application of response surface methodology for optimization of peroxi-coagulation of textile dye solution using carbon nanotube–PTFE cathode, J. Hazard. Mater., 173 (2010) 544–551.
  22. M. Zarei, A. Niaei, D. Salari, A.R. Khataee, Removal of four dyes from aqueous medium by the peroxi-coagulation method using carbon nanotube–PTFE cathode and neural network modeling, J. Electroanal. Chem., 639 (2010) 167–174.
  23. M. Zarei, D. Salari, A. Niaei, A. Khataee, Peroxi-coagulation degradation of CI Basic Yellow 2 based on carbon-PTFE and carbon nanotube-PTFE electrodes as cathode, Electrochim. Acta, 54 (2009) 6651–6660.
  24. E. Yüksel, İ.A. Şengil, M. Özacar, The removal of sodium dodecyl sulfate in synthetic wastewater by peroxi-electrocoagulation method, Chem. Eng. J., 152 (2009) 347–353.
  25. E. Brillas, J. Casado, Aniline degradation by electro-Fenton® and peroxi-coagulation processes using a flow reactor for wastewater treatment, Chemosphere, 47 (2002) 241–248.
  26. K.C.d.F. Araújo, J.P.d.P. Barreto, J.C. Cardozo, E.V. dos Santos, D.M. de Araújo, C.A. Martínez-Huitle, Sulfate pollution: evidence for electrochemical production of persulfate by oxidizing sulfate released by the surfactant sodium dodecyl sulfate, Environ. Chem. Lett., 16 (2018) 647–652.
  27. H. Chen, Z. Zhang, M. Feng, W. Liu, W. Wang, Q. Yang, Y. Hu, Degradation of 2, 4-dichlorophenoxyacetic acid in water by persulfate activated with FeS (mackinawite), Chem. Eng. J., 313 (2017) 498–507.
  28. S. Wacławek, H.V. Lutze, K. Grübel, V.V. Padil, M. Černík, D.D. Dionysiou, Chemistry of persulfates in water and wastewater treatment: a review, Chem. Eng. J., 330 (2017) 44–62.
  29. L.W. Matzek, K.E. Carter, Activated persulfate for organic chemical degradation: a review, Chemosphere, 151 (2016) 178–188.
  30. APHA, WPCF, Standard Methods for the Examination of Water and Wastewater, 20, 1998.
  31. K.-C. Huang, R.A. Couttenye, G.E. Hoag, Kinetics of heatassisted persulfate oxidation of methyl tert-butyl ether (MTBE), Chemosphere, 49 (2002) 413–420.
  32. O. Turkay, S. Barisci, A. Dimoglo, Assessment of parameters influencing the electro activated water character and explanation of process mechanism, Process Saf. Environ., 99 (2016) 129–136.
  33. F. Ghanbari, M. Moradi, A comparative study of electrocoagulation, electrochemical Fenton, electro-Fenton, and peroxicoagulation for decolorization of real textile wastewater: electrical energy consumption and biodegradability improvement, J. Environ. Chem. Eng., 3 (2015) 499–506.
  34. A.A. Burbano, D.D. Dionysiou, M.T. Suidan, T.L. Richardson, Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent, Water Res., 39 (2005) 107–118.
  35. J. Li, Z. Luan, L. Yu, Z. Ji, Pretreatment of acrylic fiber manufacturing wastewater by the Fenton process, Desalination, 284 (2012) 62–65.
  36. P.V. Nidheesh, R. Gandhimathi, Trends in electro-Fenton process for water and wastewater treatment: an overview, Desalination, 299 (2012) 1–15.
  37. O. Turkay, Z.G. Ersoy, S. Barışçı, The application of an electroperoxone process in water and wastewater treatment, J. Electrochem. Soc., 164 (2017) E94–E102.
  38. A.S. Fajardo, R.F. Rodrigues, R.C. Martins, L.M. Castro, R.M. Quinta-Ferreira, Phenolic wastewaters treatment by electrocoagulation process using Zn anode, Chem. Eng. J., 275 (2015) 331e341.
  39. X. Li, Y. Wang, J. Zhao, H. Wang, B. Wang, J. Huang, S. Deng, G. Yu, Electro-peroxone treatment of the antidepressant venlafaxine: operational parameters and mechanism, J. Hazard. Mater., 300 (2015) 298–306.
  40. W. Yao, X. Wang, H. Yang, G. Yu, S. Deng, J. Huang, B. Wang, Y. Wang, Removal of pharmaceuticals from secondary effluents by an electro-peroxone process, Water Res., 88 (2016) 826–835.
  41. K. Bouzek, I. Roušar, M. Taylor, Influence of anode material on current yield during ferrate (VI) production by anodic iron dissolution Part II: current efficiency during anodic dissolution of white cast iron to ferrate (VI) in concentrated alkali hydroxide solutions, J. Appl. Electrochem., 26 (1996) 925–931.
  42. C.A. Martínez-Hustle, E. Brillas, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review, Appl. Catal., B, 87 (2009) 105–145.
  43. T. Yılmaz Nayır, S. Kara, Container washing wastewater treatment by combined electrocoagulation–electrooxidation, Sep. Sci. Technol., 53 (2018) 1592–1603.
  44. E.do. Vale-Júnior, D.R. da Silva, A.S. Fajardo, C.A. Martínez- Hustle, Treatment of an azo dye effluent by peroxi-coagulation and its comparison to traditional electrochemical advanced processes, Chemosphere, 204 (2018) 548–555.
  45. A.R. Yazdanbakhsh, M.R. Massoudinegad, S. Elias, A.S. Mohammadi, The influence of operational parameters on reducing of azithromycin COD from wastewater using the peroxielectrocoagulation process, J. Water Process Eng., 6 (2015) 51–57.
  46. A. Arslan, E. Topkaya, S. Veli, D. Bingöl, Optimization of ultrasonication process for the degradation of linear alkyl benzene sulfonic acid by response surface methodology, CLEAN–Soil, Air, Water, (2018), https://doi.org/10.1002/clen.201700508.
  47. C. Barrera-Díaz, P. Cañizares, F. Fernández, R. Natividad, M. Rodrigo, Electrochemical advanced oxidation processes: an overview of the current applications to actual industrial effluents, J. Mex. Chem. Soc., 58 (2014) 256–275.
  48. E. Brillas, C.A. Martínez-Hustle, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review, Appl. Catal., B, 166 (2015) 603–643.
  49. J. Ge, J. Qu, P. Lei, H. Liu, New bipolar electrocoagulation– electroflotation process for the treatment of laundry wastewater, Sep. Purif. Technol., 36 (2004) 33–39.
  50. A. Arslan, E. Topkaya, D. Bingöl, S. Veli, Removal of anionic surfactant sodium dodecyl sulfate from aqueous solutions by O3/UV/H2O2 advanced oxidation process: process optimization with response surface methodology approach, Sustainable Environ. Res., 28 (2018) 65–71.