References
- C. Rosenzweig, D. Karoly, M. Vicarelli, P. Neofotis, Q. Wu,
G. Casassa, A. Menzel, T.L. Root, N. Estrella, B. Seguin,
P. Tryjanowski, C. Liu, S. Rawlins, A. Imeson, Attributing
physical and biological impacts to anthropogenic climate
change, Nature, 453 (2008) 353–358.
- E. de Nicola, O.S. Aburizaiza, A. Siddique, H. Khwaja,
D.O. Carpenter, Climate change and water scarcity: the case of
Saudi Arabia, Ann. Global Health, 81 (2015) 342–353.
- Y. Wada, L.P.H. van Beek, D. Viviroli, H.H. Dürr, R. Weingartner,
M.F.P. Bierken, Global monthly water stress: 2. water demand
and severity of water stress, Water Resour. Res., 47 (2011)
W07518 1–17.
- M. Elimelech, W.A. Phillip, The future of seawater desalination:
energy, technology, and the environment, Science, 333 (2011)
712–718.
- J.R. McCutcheon, R.L. McGinnis, M. Elimelech, A novel
ammonia—carbon dioxide forward (direct) osmosis desalination
process, Desalination, 174 (2005) 1–11.
- N. Misdan, W.J. Lau, A.F. Ismail, Seawater reverse osmosis
(SWRO) desalination by thin-film composite membrane — current
development, challenges and future prospects, Desalination,
287 (2012) 228–237.
- R. Das, Md. E. Ali, S.B.A. Hamid, S. Ramakrishna, Z.Z. Chowdhury,
Carbon nanotube membranes for water purification: a
bright future in water desalination, Desalination, 336 (2014)
97–109.
- H.M. Hegab, L. Zou, Graphene oxide-assisted membranes:
fabrication and potential applications in desalination and water
purification, J. Membr. Sci., 484 (2015) 95–106.
- E. Elsayed, R. Al-Dadah, S. Mahmoud, P.A. Anderson,
A. Elsayed, P.G. Youssef, CPO-27(Ni), aluminium fumarate
and MIL-101(Cr) MOF materials for adsorption water
desalination, Desalination, 406 (2017) 25–36.
- M.L. Lind, A.K. Ghosh, A. Jawor, X. Huang, W. Hou, Y. Yang,
E.M.V. Hoek, Influence of zeolite crystal size on zeolitepolyamide
thin film nanocomposite membranes, Langmuir,
25 (2009) 10139–10145.
- B.M. Ganesh, A.M. Isloor, A.F. Ismail, Enhanced hydrophilicity
and salt rejection study of graphene oxide-polysulfone mixed
matrix membrane, Desalination, 313 (2013) 199–207.
- A. Anand, B. Unnikrishnan, J.-Y. Mao, H.-J. Lin, C.-C. Huang,
Graphene-based nanofiltration membranes for improving salt
rejection, water flux and antifouling–a review, Desalination,
429 (2018) 119–133.
- Z. Xu, J. Zhang, M. Shan, Y. Li, B. Li, J. Niu, B. Zhou, X. Qian,
Organosilane-functionalized graphene oxide for enhanced
antifouling and mechanical properties of polyvinylidene
fluoride ultrafiltration membranes, J. Membr. Sci., 458 (2014)
1–13.
- S. Zinadini, A.A. Zinatizadeh, M. Rahimi, V. Vatanpour,
H. Zangeneh, Preparation of a novel antifouling mixed matrix
PES membrane by embedding graphene oxide nanoplates,
J. Membr. Sci., 453 (2014) 292–301.
- S.P. Surwade, S.N. Smirnov, I.V. Vlassiouk, R.R. Unocic,
G.M. Veith, S. Dai, S.M. Mahurin, Water desalination using
nanoporous single-layer graphene, Nat. Nanotechnol., 10 (2015)
459–464.
- S. Bano, A. Mahmood, S.-J. Kim, K.-H. Lee, Graphene oxide
modified polyamide nanofiltration membrane with improved
flux and antifouling properties, J. Mater. Chem. A, 3 (2015)
2065–2071.
- K. Jang, D.-K. Hwang, F.M. Auxilia, J. Jang, H. Song, B.-Y. Oh,
Y. Kim, J. Nag, J.-W. Park, S. Jeong, S.S. Lee, S. Choi, I.S. Kim,
W.B. Kim, J.-M. Myoung, M.-H. Ham, Sub-10-nm Co3O4
nanoparticles/graphene composites as high-performance anodes
for lithium storage, Chem. Eng. J., 309 (2017) 15–21.
- S. Kook, C.D. Swetha, J. Lee, C. Lee, T. Fane, I.S. Kim, Forward
osmosis membranes under null-pressure condition: do
hydraulic and osmotic pressure have identical nature?, Environ.
Sci. Technol., 52 (2018) 3556–3566.
- B. Kim, G. Gwak, S. Hong, Review on methodology for
determining forward osmosis (FO) membrane characteristics:
water permeability (A), solute permeability (B), and structural
parameter (S), Desalination, 422 (2017) 5–16.
- D. Konios, M.M. Stylianakis, E. Stratakis, E. Kymakis,
Dispersion behavior of graphene oxide and reduced graphene
oxide, J. Colloid Interface Sci., 430 (2014) 108–112.
- S. Park, R.S. Ruoff, Chemical methods for the production of
graphenes, Nat. Nanotechnol., 4 (2009) 217–224.
- D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace,
Processable aqueous dispersions of graphene nanosheets,
Nat. Nanotechnol., 3 (2008) 101–105.
- C. Vallés, C. Drummond, H. Saadaoui, C.A. Furtado, M. He,
O. Roubeau, L. Ortolani, M. Monthioux, A. Pénicaud, Solutions
of negatively charged graphene sheets and ribbons, J. Am.
Chem. Soc., 130 (2008) 15802–15804.
- F. Li, Y. Liu, C.-B. Qu, H.-M. Xiao, Y. Hua, G.-X. Sui, S.-Y. Fu,
Enganced mechanical properties of short carbon fiber reinforced
polyethersulfone composites by graphene oxide coating,
Polymer, 59 (2015) 155–165.
- L. Shen, S. Xiong, Y. Wang, Graphene oxide incorporated thinfilm
composite membranes for forward osmosis applications,
Chem. Eng. Sci., 143 (2016) 194–205.
- B.D. Mistry, Handbook of Spectroscopic Data: Chemistry -
UV, IR, PMR, CNMR and Mass Spectroscopy, Oxford Book
Company, Jaipur, India, 2009.
- T. Fujioka, B.E. O’Rourke, K. Michishio, Y. Kobayashi, N. Oshima,
H. Kodamatani, T. Shintani, L.D. Nghiem, Transport of small
and neutral solutes through reverse osmosis membranes: role
of skin layer conformation of the polyamide film, J. Membr. Sci.,
554 (2018) 301–308.
- M.J. Park, S. Phuntsho, T. He, G.M. Nisola, L.D. Tijing, X.-M. Li,
G. Chen, W.-J. Chung, H.K. Shon, Graphene oxide incorporated
polysulfone substrate for the fabrication of flat-sheet thinfilm
composite forward osmosis membranes, J. Membr. Sci.,
493 (2015) 496–507.
- C.-M. Kim, S. Hong, R. Li, I.S. Kim, P. Wang, Janus graphene
oxide-doped, lamellar composite membranes with strong
aqueous stability, ACS Sustainable Chem. Eng., 7 (2019)
7252–7259.
- P. Sukitpaneenit, T.-S. Chung, High performance thin-film
composite forward osmosis hollow fiber membranes with
macrovoid-free and highly porous structure for sustainable
water production, Environ. Sci. Technol., 46 (2012) 7358–7365.
- L. Luo, P. Wang, S. Zhang, G. Han, T.-S. Chung, Novel thinfilm
composite tri-bore hollow fiber membrane fabrication
for forward osmosis, J. Membr. Sci., 461 (2014) 28–38.