References

  1. S.K. Kachigan, Multivariate Statistical Analysis: A Conceptual Introduction, Radius Press, New York, 1991.
  2. C. Ramírez-Hernández, B.A. Escobedo-Trujillo, D. Colorado, F.A. Alaffita-Hernández, L.I. Morales, J.A. Hernández, Coefficient of performance prediction by a polynomial of a heat transformer with two-duplex components, Appl. Therm. Eng., 114 (2017) 1193–1202.
  3. S. Karytsas, I. Choropanitis, Barriers against and actions towards renewable energy technologies diffusion: a principal component analysis for residential ground source heat pump (GSHP) systems, Renewable Sustainable Energy Rev., 78 (2017) 252–271.
  4. C.M. Popescu, P. Navi, M.I. Placencia-Peña, M.C. Popescu, Structural changes of wood during hydro-thermal and thermal treatments evaluated through NIR spectroscopy and principal component analysis, Spectrochim. Acta, Part A, 191 (2018) 405–412.
  5. R. Baklouti, M. Mansouri, M. Nounou, H. Nounou, A.B. Hamida, Iterated robust kernel fuzzy principal component analysis and application to fault detection, J. Comput. Sci., 15 (2016) 34–49.
  6. A. Lefkir, R. Maachou, A. Bermad, A. Khouider, Factorization of physicochemical parameters of activated sludge process using the principal component analysis, Desal. Wat. Treat., 57 (2015) 20292–20297.
  7. G.D. Garson, Interpreting neural-network connection weights, Artif. Intell. Expert, 6 (1991) 47–51.
  8. Y. El-Hamzaoui, J.A. Hernández, S. Silva-Martínez, A. Bassam, A. Alvarez, C. Lizama-Bahena, Optimal performance of COD removal during aqueous treatment of alazine and gesaprim commercial herbicides by direct and inverse neural network, Desalination, 277 (2011) 325–337.
  9. J. Díaz-Gómez, A. Parrales, A. Alvarez, S. Silva-Martínez, D. Colorado, J.A. Hernández, Prediction of global solar radiation by artificial neural network based on a meteorological environmental data, Desal. Wat. Treat., 55 (2015) 3210–3217.
  10. J. Siqueiros, F.A. Holland, Water desalination using heat pumps, Energy, 25 (2000) 717–729.
  11. I.T. Jolliffe, Principal Component Analysis, Springer-Verlag, New York, 2002.
  12. S.I. Grossman, Algebra Lineal, McGraw Hill, México, 2012.
  13. L.I. Morales, R.A. Conde-Gutiérrez, J.A. Hernández, A. Huicochea, D. Juárez-Romero, J. Siqueiros, Optimization of an absorption heat transformer with two-duplex components using inverse neural network and solved by genetic algorithm, Appl. Therm. Eng., 85 (2015) 322–333.
  14. J.A. Hernández, A. Bassam, J. Siqueiros, D. Juárez-Romero, Optimum operating conditions for a water purification process integrated to a heat transformer with energy recycling using neural network inverse, Renewable Energy, 34 (2009) 1084–1091.
  15. W. Rivera, A. Huicochea, R.J. Romero, A. Lozano, Experimental assessment of double-absorption heat transformer operating with H2O/LiBr, Appl. Therm. Eng., 132 (2018) 432–440.
  16. E. Martínez-Martínez, B.A. Escobedo-Trujillo, D. Colorado, L.I. Morales, A. Huicochea, J.A. Hernández, J. Siqueiros, Criteria for improving the traditional artificial neural network methodology applied to predict COP for a heat transformer, Desal. Wat. Treat., 73 (2017) 90–100.
  17. B.A. Escobedo-Trujillo, F.A. Alaffita-Hernández, D. Colorado, J. Siqueiros, Coefficient of performance prediction by a polynomial model of absorption heat transformer, Rev. Mex. Ing. Chim., 13 (2014) 907–917.
  18. A. Huicochea, J. Siqueiros, Improved efficiency of energy use of a heat transformer using a water purification system, Desalination, 257 (2010) 8–15.
  19. L.I. Morales, Estudio experimental sobre un sistema portátil de purificación de agua integrado a un transformador térmico, Ph.D. Thesis, CIICAp-UAEM, 2005.
  20. J.A. Hernández, W. Rivera, D. Colorado, G. Moreno-Quintanar, Optimal COP prediction of a solar intermittent refrigeration system for ice production by means of direct and inverse artificial neural networks, Sol. Energy, 86 (2012) 1108–1117.