References

  1. D. Park, Y.-S. Yun, J.M. Park, Reduction of hexavalent chromium with the brown seaweed Ecklonia biomass, Environ. Sci. Technol., 38 (2004) 4860–4864.
  2. R.M. Sedman, J. Beaumont, T.A. McDonald, S. Reynolds, G. Krowech, R. Howd, Review of the evidence regarding the carcinogenicity of hexavalent chromium in drinking water, J. Environ. Sci. Health., Part C, 24 (2006) 155–182.
  3. P. Singare, S. Dhabarde, Efficiency assessment of aerobic biological effluent treatment plant treating pharmaceutical effluents, Int. J. Environ. Sci. Technol., 14 (2017) 1419–1438.
  4. P. Singare, Fluidized aerobic bio-reactor technology in treatment of textile effluent, J. Environ. Chem. Eng., 7 (2019) 102899.
  5. S.A. Jabasingh, G. Pavithra, Response surface approach for the biosorption of Cr6+ ions by Mucor racemosus, Clean–Soil, Air, Water, 38 (2010) 492–499.
  6. A. Elahi, A. Rehman, Comparative behavior of two gram positive Cr6+ resistant bacterial strains Bacillus aerius S1 and Brevibacterium iodinum S2 under hexavalent chromium stress, Biotechnol. Rep., 21 (2019) e00307.
  7. J.-J. Qin, M.-H. Oo, M.-N. Wai, C.-M. Ang, F.-S. Wong, H. Lee, A dual membrane UF/RO process for reclamation of spent rinses from a nickel-plating operation — a case study, Water Res., 37 (2003) 3269–3278.
  8. Z. Wang, G. Liu, Z. Fan, X. Yang, J. Wang, S. Wang, Experimental study on treatment of electroplating wastewater by nanofiltration, J. Membr. Sci., 305 (2007) 185–195.
  9. L. Marder, A.M. Bernardes, J.Z. Ferreira, Cadmium electroplating wastewater treatment using a laboratory-scale electrodialysis system, Sep. Purif. Technol., 37 (2004) 247–255.
  10. G. Chen, Electrochemical technologies in wastewater treatment, Sep. Purif. Technol., 38 (2004) 11–41.
  11. H.D. Doan, J. Wu, R. Mitzakov, Combined electrochemical and biological treatment of industrial wastewater using porous electrodes, J. Chem. Technol. Biotechnol.: Int. Res. Process Environ. Clean Technol., 81 (2006) 1398–1408.
  12. D. Mohan, C.U. Pittman Jr., Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water, J. Hazard. Mater., 137 (2006) 762–811.
  13. A. Ewecharoen, P. Thiravetyan, W. Nakbanpote, Comparison of nickel adsorption from electroplating rinse water by coir pith and modified coir pith, Chem. Eng. J., 137 (2008) 181–188.
  14. L. Alvarado, A. Chen, Electrodeionization: principles, strategies and applications, Electrochim. Acta, 132 (2014) 583–597.
  15. T. Panayotova, M. Dimova-Todorova, I. Dobrevsky, Purification and reuse of heavy metals containing wastewaters from electroplating plants, Desalination, 206 (2007) 135–140.
  16. S.A. Cavaco, S. Fernandes, M.M. Quina, L.M. Ferreira, Removal of chromium from electroplating industry effluents by ion exchange resins, J. Hazard. Mater., 144 (2007) 634–638.
  17. A. Grabowski, G. Zhang, H. Strathmann, G. Eigenberger, The production of high purity water by continuous electrodeionization with bipolar membranes: influence of the anion-exchange membrane permselectivity, J. Membr. Sci., 281 (2006) 297–306.
  18. P. Spoor, L. Koene, W. Ter Veen, L. Janssen, Continuous deionization of a dilute nickel solution, Chem. Eng. J., 85 (2002) 127–135.
  19. K.-H. Yeon, J.-H. Song, S.-H. Moon, A study on stack configuration of continuous electrodeionization for removal of heavy metal ions from the primary coolant of a nuclear power plant, Water Res., 38 (2004) 1911–1921.
  20. S. Guan, S. Wang, Experimental studies on electrodeionization for the removal of copper ions from dilute solutions, Separ. Sci. Technol., 42 (2007) 949–961.
  21. A. Smara, R. Delimi, E. Chainet, J. Sandeaux, Removal of heavy metals from diluted mixtures by a hybrid ion-exchange/electrodialysis process, Sep. Purif. Technol., 57 (2007) 103–110.
  22. Y. Xing, X. Chen, D. Wang, Electrically regenerated ion exchange for removal and recovery of Cr(VI) from wastewater, Environ. Sci. Technol., 41 (2007) 1439–1443.
  23. Y. Xing, X. Chen, P. Yao, D. Wang, Continuous electrodeionization for removal and recovery of Cr(VI) from wastewater, Sep. Purif. Technol., 67 (2009) 123–126.
  24. Y. Xing, X. Chen, D. Wang, Variable effects on the performance of continuous electrodeionization for the removal of Cr(VI) from wastewater, Sep. Purif. Technol., 68 (2009) 357–362.
  25. I. Widiasa, P. Sutrisna, I. Wenten, Performance of a novel electrodeionization technique during citric acid recovery, Sep. Purif. Technol., 39 (2004) 89–97.
  26. X. Chen, G. Chen, P.L. Yue, Stable Ti/IrOx−Sb2O5−SnO2 anode for O2 evolution with low Ir content, J. Phys. Chem. B, 105 (2001) 4623–4628.
  27. A.E. Greenberg, Standard Methods for the Examination of Water and Wastewater, 18th ed., American Public Health Association, Washington, D.C., 1992.
  28. Z. Ye, X. Yin, L. Chen, X. He, Z. Lin, C. Liu, S. Ning, X. Wang, Y. Wei, An integrated process for removal and recovery of Cr(VI) from electroplating wastewater by ion exchange and reduction–precipitation based on a silica-supported pyridine resin, J. Cleaner Prod., 236 (2019) 117631.
  29. I. Frenzel, H. Holdik, D. Stamatialis, G. Pourcelly, M. Wessling, Chromic acid recovery by electro-electrodialysis: II. Pilot scale process, development, and optimization, Sep. Purif. Technol., 47 (2005) 27–35.