References
- S.B. Zaman, M.A. Hussain, R. Nye, V. Mehta, K.T. Mamun,
N. Hossain, A Review on antibiotic resistance: alarm bells are
ringing, Cureus, 9 (2017) 1403–1412.
- M.l. Farré, S. Pérez, L. Kantiani, D. Barceló, Fate and toxicity
of emerging pollutants, their metabolites and transformation
products in the aquatic environment, TrAC Trends Anal.
Chem., 27 (2008) 991–1007.
- C.G. Daughton, Pharmaceutical Ingredients in Drinking Water:
Overview of Occurrence and Significance of Human Exposure,
in: Contaminants of Emerging Concern in the Environment:
Ecological and Human Health Considerations, American
Chemical Society, 2010, pp. 9–68.
- R.T. Williams, Human Pharmaceuticals: Assessing the Impacts
on Aquatic Ecosystems, in, SETAC Press, Pensacola, FL, 2005.
- A.S. Giri, A.K. Golder, Ciprofloxacin degradation in photo-Fenton and photo-catalytic processes: degradation mechanisms
and iron chelation, J. Environ. Sci., 80 (2019) 82–92.
- A. Kaur, S.K. Kansal, Bi2WO6 nanocuboids: an efficient visible
light active photocatalyst for the degradation of levofloxacin
drug in aqueous phase, Chem. Eng. J., 302 (2016) 194–203.
- J. Trawinski, R. Skibinski, Photolytic and photocatalytic
degradation of the antipsychotic agent tiapride: kinetics,
transformation pathways and computational toxicity
assessment, J. Hazard. Mater., 321 (2017) 841–858.
- I. Epold, M. Trapido, N. Dulova, Degradation of levofloxacin in
aqueous solutions by Fenton, ferrous ion-activated persulfate
and combined Fenton/persulfate systems, Chem. Eng. J.,
279 (2015) 452–462.
- S.K. Kansal, P. Kundu, S. Sood, R. Lamba, A. Umar, S.K. Mehta,
Photocatalytic degradation of the antibiotic levofloxacin using
highly crystalline TiO2 nanoparticles, New J. Chem., 38 (2014)
3220–3226.
- S. Sharma, A. Umar, S.K. Mehta, A.O. Ibhadon, S.K. Kansal,
Solar light driven photocatalytic degradation of levofloxacin
using TiO2/carbon-dot nanocomposites, New J. Chem., 42 (2018)
7445–7456.
- W. Guo, Y. Shi, H. Wang, H. Yang, G. Zhang, Sonochemical
decomposition of levofloxacin in aqueous solution, Water
Environ. Res., 82 (2010) 696–700.
- J. Xu, B. Feng, Y. Wang, Y. Qi, J. Niu, M. Chen, BiOCl decorated
NaNbO3 nanocubes: a novel p-n heterojunction photocatalyst
with improved activity for ofloxacin degradation, Front. Chem.,
6 (2018) 9p, https://doi.org/10.3389/fchem.2018.00393..
- S. Li, Y. Liu, Y. Long, L. Mo, H. Zhang, J. Liu, Facile synthesis
of Bi2MoO6 microspheres decorated by CdS nanoparticles
with efficient photocatalytic removal of levfloxacin antibiotic,
Catalysts, 8 (2018) 477.
- M.Y. Khan, M. Ahmad, S. Sadaf, S. Iqbal, F. Nawaz, J. Iqbal,
Visible light active indigo dye/graphene/WO3 nanocomposites
with excellent photocatalytic activity, J. Mater. Res. Technol.,
8 (2019) 3261–3269.
- Z. Qiao, T. Yan, W. Li, B. Huang, In situ anion exchange synthesis
of In2S3/In(OH)3 heterostructures for efficient photocatalytic
degradation of MO under solar light, New J. Chem., 41 (2017)
3134–3142.
- J. Romão, D. Barata, N. Ribeiro, P. Habibovic, H. Fernandes,
G. Mul, High throughput screening of photocatalytic conversion
of pharmaceutical contaminants in water, Environ. Pollut.,
220 (2017) 1199–1207.
- M. Sayed, L.A. Shah, J.A. Khan, N.S. Shah, J. Nisar, H.M. Khan,
P. Zhang, A.R. Khan, Efficient photocatalytic degradation of
norfloxacin in aqueous media by hydrothermally synthesized
immobilized TiO2/Ti films with exposed {001} facets, J. Phys.
Chem. A, 120 (2016) 9916–9931.
- I. Corsi, M. Winther-Nielsen, R. Sethi, C. Punta, C. Della Torre,
G. Libralato, G. Lofrano, L. Sabatini, M. Aiello, L. Fiordi,
F. Cinuzzi, A. Caneschi, D. Pellegrini, I. Buttino, Ecofriendly
nanotechnologies and nanomaterials for environmental applications:
key issue and consensus recommendations for
sustainable and ecosafe nanoremediation, Ecotoxicol. Environ.
Saf., 154 (2018) 237–244.
- H. Huang, L. Liu, Y. Zhang, N. Tian, Novel BiIO4/BiVO4
composite photocatalyst with highly improved visible light-induced photocatalytic performance for rhodamine B
degradation and photocurrent generation, RSC Adv., 5 (2015)
1161–1167.
- L. Chen, D. Meng, X. Wu, A. Wang, J. Wang, M. Yu,
Y. Liang, Enhanced visible light photocatalytic performances
of self-assembled hierarchically structured BiVO4/Bi2WO6
heterojunction composites with different morphologies, RSC
Adv., 6 (2016) 52300–52309.
- M. Palmai, E.M. Zahran, S. Angaramo, S. Balint, Z. Paszti, M.R.
Knecht, L.G. Bachas, Pd-decorated m-BiVO4/BiOBr ternary
composite with dual heterojunction for enhanced photocatalytic
activity, J. Mater. Chem. A, 5 (2017) 529–534.
- Y. Hu, J. Fan, C. Pu, H. Li, E. Liu, X. Hu, Facile synthesis of
double cone-shaped Ag4V2O7/BiVO4 nanocomposites with
enhanced visible light photocatalytic activity for environmental
purification, J. Photochem. Photobiol. A, 337 (2017) 172–183.
- D. Lv, D. Zhang, X. Pu, D. Kong, Z. Lu, X. Shao, H. Ma, J. Dou,
One-pot combustion synthesis of BiVO4/BiOCl composites with
enhanced visible-light photocatalytic properties, Sep. Purif.
Technol., 174 (2017) 97–103.
- M. Guo, Y. Wang, Q. He, W. Wang, W. Wang, Z. Fu,
H. Wang, Enhanced photocatalytic activity of S-doped BiVO4
photocatalysts, RSC Adv., 5 (2015) 58633–58639.
- A. Malathi, J. Madhavan, A. Muthupandian, A. Prabhakarn,
A review on BiVO4 photocatalyst: activity enhancement
methods for solar photocatalytic applications, Appl. Catal. A,
555 (2018) 47–74.
- G.G. Zhanel, S. Fontaine, H. Adam, K. Schurek, M. Mayer,
A.M. Noreddin, A.S. Gin, E. Rubinstein, D.J. Hoban, A Review
of new fluoroquinolones: focus on their use in respiratory tract
infections, Treat Respir. Med., 5 (2006) 437–465.
- X.-S. Miao, F. Bishay, M. Chen, C.D. Metcalfe, Occurrence of
antimicrobials in the final effluents of wastewater treatment
plants in Canada, Environ. Sci. Technol., 38 (2004) 3533–3541.
- X. Zhang, Z. Ai, F. Jia, L. Zhang, X. Fan, Z. Zou, Selective
synthesis and visible-light photocatalytic activities of BiVO4
with different crystalline phases, Mater. Chem. Phys., 103 (2007)
162–167.
- L. Zhou, W. Wang, S. Liu, L. Zhang, H. Xu, W. Zhu, A
sonochemical route to visible-light-driven high-activity BiVO4
photocatalyst, J. Mol. Catal., A, 252 (2006) 120–124.
- A. Zhang, J. Zhang, N. Cui, X. Tie, Y. An, L. Li, Effects of pH
on hydrothermal synthesis and characterization of visible-lightdriven
BiVO4 photocatalyst, J. Mol. Catal. A, 304 (2009) 28–32.
- X. Meng, L. Zhang, H. Dai, Z. Zhao, R. Zhang, Y. Liu, Surfactantassisted
hydrothermal fabrication and visible-light-driven
photocatalytic degradation of methylene blue over multiple
morphological BiVO4 single-crystallites, Mater. Chem. Phys.,
125 (2011) 59–65.
- H. Huang, S. Tu, C. Zeng, T. Zhang, A.H. Reshak, Y. Zhang,
Macroscopic polarization enhancement promoting photo- and
piezoelectric-induced charge separation and molecular oxygen
activation, Angew. Chem. Int. Ed., 56 (2017) 11860–11864.
- H. Huang, Y. He, X. Li, M. Li, C. Zeng, F. Dong, X. Du, T. Zhang,
Y. Zhang, Bi2O2(OH)(NO3) as a desirable [Bi2O2]2+ layered
photocatalyst: strong intrinsic polarity, rational band structure
and {001} active facets co-beneficial for robust photooxidation
capability, J. Mater Chem. A, 3 (2015) 24547–24556.
- H. Huang, X. Li, J. Wang, F. Dong, P.K. Chu, T. Zhang,
Y. Zhang, Anionic group self-doping as a promising strategy:
band-gap engineering and multi-functional applications of
high-performance CO32–-doped Bi2O2CO3, ACS Catal., 5 (2015)
4094–4103.
- G. Lu, Z. Lun, H. Liang, H. Wang, Z. Li, W. Ma, In situ
fabrication of BiVO4-CeVO4 heterojunction for excellent
visible light photocatalytic degradation of levofloxacin,
J. Alloy Compd., 772 (2019) 122–131.
- J.W.T. Spinks, R.J. Woods, An Introduction to Radiation
Chemistry, John Wiley and Sons Inc, USA, 1990.
- S. Hisaindee, M.A. Meetani, M.A. Rauf, Application of LC-MS to
the analysis of advanced oxidation process (AOP) degradation
of dye products and reaction mechanisms, TrAC Trends Anal.
Chem., 49 (2013) 31–44.