References

  1. Z. Zhang, N. Cissoko, J.J. Wo, X.H. Xu, Factors influencing the dechlorination of 2,4-dichlorophenol by Ni–Fe nanoparticles in the presence of humic acid, J. Hazard. Mater., 165 (2009) 78–86.
  2. H.R. Pouretedal, E. Saedi, Dechlorination of 2,4-dichlorophenol by zero-valent iron nanoparticles impregnated MCM-48, Int. J. Ind. Chem., 5 (2014) 77–83.
  3. M. Raoov, S. Mohamad, M.R. Abas, Removal of 2,4-dichlorophenol using cyclodextrin-ionic liquid polymer as a macroporous material: characterization, adsorption isotherm, kinetic study, thermodynamicoarse sand, J. Hazard. Mater., 263 (2013) 501–516.
  4. J. Xu, X. Lv, J. Li, Y. Li, L. Shen, H. Zhou, X. Xu, Simultaneous adsorption and dechlorination of 2,4-dichlorophenol by Pd/Fe nanoparticles with multi-walled carbon nanotube support, J. Hazard. Mater., 225 (2012) 36–45.
  5. Y. Li, Y. Zhang, J. Li, G. Sheng, X. Zheng, Enhanced reduction of chlorophenols by nanoscale zerovalent iron supported on organobentonite, Chemosphere, 92 (2013) 368–374.
  6. A.D. Henderson, A.H. Demond, Long-term performance of zero-valent iron permeable reactive barriers: a critical review, Environ. Eng. Sci., 24 (2007) 401–423.
  7. F. Obiri-Nyarko, S.J. Grajales-Mesa, G. Malina, An overview of permeable reactive barriers for in situ sustainable groundwater remediation, Chemosphere, 111 (2014) 243–259.
  8. S. Maitra, Permeable reactive barrier: a technology for groundwater remediation – a mini review, Biodegradation, 80 (2019) 203–216.
  9. H.R. Pouretedal, E. Saedi, Dechlorination of 2,4-dichlorophenol by zero-valent iron nanoparticles impregnated MCM-48, Int. J. Ind. Chem., 5 (2014) 77–83.
  10. M. Raoov, S. Mohamad, M.R. Abas, Removal of 2,4-dichlorophenol using cyclodextrin-ionic liquid polymer as a macroporous material: characterization, adsorption isotherm, kinetic study, thermodynamicoarse sand, J. Hazard. Mater., 263 (2013) 501–516.
  11. F.I. Khan, T. Husain, R. Hejazi, An overview and analysis of site remediation technologies, J. Environ. Manage., 71 (2004) 95–122.
  12. A. Parbs, M. Ebert, A. Dahmke, Long-term effects of dissolved carbonate species on the degradation of trichloroethylene by zerovalent iron, Environ. Sci. Technol., 41 (2007) 291–296.
  13. Z. Li, H.K. Jones, R.S. Bowman, R. Helferich, Enhanced reduction of chromate and PCE by pelletized surfactantmodified zeolite/zero-valent iron, Environ. Sci. Technol., 33 (1999) 4326–4330.
  14. D.H. Phillips, T.V. Nooten, L. Bastiaens, M.I. Russell, K. Dickson, S. Plant, J.M.E. Ahad, T. Newton, T. Elliot, R.M. Kalin, Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater, Environ. Sci. Technol., 44 (2010) 3861–3869.
  15. R.W. Gillham, Enhanced degradation of halogenated aliphaticoarse sand by zero-valent iron, Ground Water, 32 (1994) 958–967.
  16. G.V. Lowry, K.M. Johnson, Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution, Environ. Sci. Technol., 38 (2004) 5208–5216.
  17. S.R. Rajajayavel, S. Ghoshal, Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron, Water Res., 78 (2015) 144–153.
  18. J. Xu, T. Sheng, Y. Hu. Adsorption–dechlorination of 2,4-dichlorophenol using two specified MWCNTs-stabilized Pd/Fe nanocomposites, Chem. Eng. J., 219 (2013) 162–173.
  19. J. Xu, X. Liu, G.V. Lowry, Z. Cao, H. Zhao, J.L. Zhou, X. Xu, Dechlorination mechanism of 2,4-dichlorophenol by magnetic MWCNTS supported Pd/Fe nanohybrids: rapid adsorption, gradual dechlorination, and desorption of phenol, ACS Appl. Mater. Interfaces, 8 (2016) 7333–7342.
  20. H. Liu, R. Xia, D. Zhao, X. Fan, T. Feng, Enhanced adsorption of 2,4-dichlorophenol by nanoscale zero-valent iron loaded on bentonite and modified with a cationic surfactant, Ind. Eng. Chem. Res., 56 (2016) 191–197.
  21. J. Wan, J. Wan, Y. Ma, M. Huang, Y. Wang, R. Ren, Reactivity characteristics coarse sand of SiO2-coated zero-valent iron nanoparticles for 2,4-dichlorophenol degradation, Chem. Eng. J., 221 (2013) 300–307.
  22. X. Zhao, W. Liu, Z. Cai, B. Han, T. Qian, D. Zhao, An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation, Water Res., 100 (2016) 245–266.
  23. H. Jia, C. Wang, Adsorption and dechlorination of 2,4-dichlorophenol (2,4-DCP) on a multi-functional organosmectite templated zero-valent iron composite, Chem. Eng. J., 191 (2012) 202–209.
  24. W. Gao, Y. Zhang, X. Zhang, Z. Duan, Y. Wang, C. Qin, X. Hu, H. Wang, S. Chang, Permeable reactive barrier of coarse sandsupported zero valent iron for the removal of 2,4-dichlorophenol in groundwater, Environ. Sci. Pollut. Res., 22 (2015) 16889–16896.
  25. Y. Tan, J. Liang, G. Zeng, Effects of PRB design based on numerical simulation and response surface methodology, Chin. J. Environ. Eng., 10 (2016) 655–661.
  26. A. Weber, A.S. Ruhl, R.T. Amos, Investigating dominant processes in ZVI permeable reactive barriers using reactive transport modeling, J. Contam. Hydrol., 151 (2013) 68–82.
  27. S.G. Benner, D.W. Blowes, W.D. Gould, R.B. Herbert, C.J. Ptacek, Geochemistry of a permeable reactive barrier for metals and acid mine drainage, Environ. Sci. Technol., 33 (1999) 2793–2799.
  28. H. Deng, W. He, J. Hu, Numerical simulation of Fe0-PRB in rehabilitating groundwater contaminated by nitrate, Chin. Environ. Sci., 35 (2015) 2375–2381.
  29. S.W. Jeen, K.U. Mayer, R.W. Gihham, D.W. Blowes, Reactive transport modeling of trichloroethene treatment with declining reactivity of iron, Environ. Sci. Technol., 41 (2007) 1432–1438.
  30. O. Eljamal, K. Sasaki, T. Hirajima, Numerical simulation for reactive solute transport of arsenic in permeable reactive barrier column including zero-valent iron, Appl. Math. Modell., 35 (2011) 5198–5207.
  31. C. Wanner, S. Zink, U. Eggenberger, U. Mäder, Assessing the Cr(VI) reduction efficiency of a permeable reactive barrier using Cr isotope measurements and 2D reactive transport modeling, J. Contam. Hydrol., 131 (2012) 54–63.
  32. L. Li, C.H. Benson, E.M. Lawson, Modeling porosity reductions caused by mineral fouling in continuous-wall permeable reactive barriers, J. Contam. Hydrol., 83 (2006) 89–121.
  33. K.U. Mayer, D.W. Blowes, E.O. Frind, Reactive transport modeling of an in situ reactive barrier for the treatment of hexavalent chromium and trichloroethylene in groundwater, Water Resour. Res., 37 (2001) 3091–3103.
  34. H. Jia, C. Wang, Adsorption and dechlorination of 2,4-dichlorophenol (2,4-DCP) on a multi-functional organosmectite templated zero-valent iron composite, Chem. Eng. J., 191 (2012) 202–209.
  35. R. Cheng, J. Wang, W. Zhang, Reductive dechlorination of 2,4-dichlorophenol using nanoscale Fe0: influencing factors and possible mechanism, Sci. China Ser. B: Chem., 50 (2007) 574–579.
  36. J. Xu, J. Tang, S.A. Baig, X. Lv, X. Xu, Enhanced dechlorination of 2,4-dichlorophenol by Pd/Fe-Fe3O4 nanocomposites, J. Hazard. Mater., 244 (2013) 628–636.