References
- Z. Zhang, N. Cissoko, J.J. Wo, X.H. Xu, Factors influencing the
dechlorination of 2,4-dichlorophenol by Ni–Fe nanoparticles in
the presence of humic acid, J. Hazard. Mater., 165 (2009) 78–86.
- H.R. Pouretedal, E. Saedi, Dechlorination of 2,4-dichlorophenol
by zero-valent iron nanoparticles impregnated MCM-48, Int. J.
Ind. Chem., 5 (2014) 77–83.
- M. Raoov, S. Mohamad, M.R. Abas, Removal of 2,4-dichlorophenol
using cyclodextrin-ionic liquid polymer as a
macroporous material: characterization, adsorption isotherm,
kinetic study, thermodynamicoarse sand, J. Hazard. Mater.,
263 (2013) 501–516.
- J. Xu, X. Lv, J. Li, Y. Li, L. Shen, H. Zhou, X. Xu, Simultaneous
adsorption and dechlorination of 2,4-dichlorophenol by Pd/Fe nanoparticles with multi-walled carbon nanotube support,
J. Hazard. Mater., 225 (2012) 36–45.
- Y. Li, Y. Zhang, J. Li, G. Sheng, X. Zheng, Enhanced reduction
of chlorophenols by nanoscale zerovalent iron supported on
organobentonite, Chemosphere, 92 (2013) 368–374.
- A.D. Henderson, A.H. Demond, Long-term performance of
zero-valent iron permeable reactive barriers: a critical review,
Environ. Eng. Sci., 24 (2007) 401–423.
- F. Obiri-Nyarko, S.J. Grajales-Mesa, G. Malina, An overview of
permeable reactive barriers for in situ sustainable groundwater
remediation, Chemosphere, 111 (2014) 243–259.
- S. Maitra, Permeable reactive barrier: a technology for
groundwater
remediation – a mini review, Biodegradation,
80 (2019) 203–216.
- H.R. Pouretedal, E. Saedi, Dechlorination of 2,4-dichlorophenol
by zero-valent iron nanoparticles impregnated MCM-48, Int. J.
Ind. Chem., 5 (2014) 77–83.
- M. Raoov, S. Mohamad, M.R. Abas, Removal of 2,4-dichlorophenol
using cyclodextrin-ionic liquid polymer as a macroporous
material: characterization, adsorption isotherm, kinetic
study, thermodynamicoarse sand, J. Hazard. Mater., 263 (2013)
501–516.
- F.I. Khan, T. Husain, R. Hejazi, An overview and analysis of
site remediation technologies, J. Environ. Manage., 71 (2004)
95–122.
- A. Parbs, M. Ebert, A. Dahmke, Long-term effects of dissolved
carbonate species on the degradation of trichloroethylene by
zerovalent iron, Environ. Sci. Technol., 41 (2007) 291–296.
- Z. Li, H.K. Jones, R.S. Bowman, R. Helferich, Enhanced
reduction of chromate and PCE by pelletized surfactantmodified
zeolite/zero-valent iron, Environ. Sci. Technol.,
33 (1999) 4326–4330.
- D.H. Phillips, T.V. Nooten, L. Bastiaens, M.I. Russell, K. Dickson,
S. Plant, J.M.E. Ahad, T. Newton, T. Elliot, R.M. Kalin, Ten
year performance evaluation of a field-scale zero-valent iron
permeable reactive barrier installed to remediate trichloroethene
contaminated groundwater, Environ. Sci. Technol., 44 (2010)
3861–3869.
- R.W. Gillham, Enhanced degradation of halogenated aliphaticoarse
sand by zero-valent iron, Ground Water, 32 (1994)
958–967.
- G.V. Lowry, K.M. Johnson, Congener-specific dechlorination
of dissolved PCBs by microscale and nanoscale zerovalent iron
in a water/methanol solution, Environ. Sci. Technol., 38 (2004)
5208–5216.
- S.R. Rajajayavel, S. Ghoshal, Enhanced reductive dechlorination
of trichloroethylene by sulfidated nanoscale zerovalent iron,
Water Res., 78 (2015) 144–153.
- J. Xu, T. Sheng, Y. Hu. Adsorption–dechlorination of 2,4-dichlorophenol
using two specified MWCNTs-stabilized Pd/Fe nanocomposites,
Chem. Eng. J., 219 (2013) 162–173.
- J. Xu, X. Liu, G.V. Lowry, Z. Cao, H. Zhao, J.L. Zhou, X. Xu,
Dechlorination mechanism of 2,4-dichlorophenol by magnetic
MWCNTS supported Pd/Fe nanohybrids: rapid adsorption,
gradual dechlorination, and desorption of phenol, ACS Appl.
Mater. Interfaces, 8 (2016) 7333–7342.
- H. Liu, R. Xia, D. Zhao, X. Fan, T. Feng, Enhanced adsorption
of 2,4-dichlorophenol by nanoscale zero-valent iron loaded on
bentonite and modified with a cationic surfactant, Ind. Eng.
Chem. Res., 56 (2016) 191–197.
- J. Wan, J. Wan, Y. Ma, M. Huang, Y. Wang, R. Ren, Reactivity
characteristics coarse sand of SiO2-coated zero-valent iron
nanoparticles for 2,4-dichlorophenol degradation, Chem. Eng. J.,
221 (2013) 300–307.
- X. Zhao, W. Liu, Z. Cai, B. Han, T. Qian, D. Zhao, An overview
of preparation and applications of stabilized zero-valent iron
nanoparticles for soil and groundwater remediation, Water
Res., 100 (2016) 245–266.
- H. Jia, C. Wang, Adsorption and dechlorination of
2,4-dichlorophenol (2,4-DCP) on a multi-functional organosmectite
templated zero-valent iron composite, Chem. Eng. J.,
191 (2012) 202–209.
- W. Gao, Y. Zhang, X. Zhang, Z. Duan, Y. Wang, C. Qin, X. Hu,
H. Wang, S. Chang, Permeable reactive barrier of coarse sandsupported
zero valent iron for the removal of 2,4-dichlorophenol
in groundwater, Environ. Sci. Pollut. Res., 22 (2015) 16889–16896.
- Y. Tan, J. Liang, G. Zeng, Effects of PRB design based on
numerical simulation and response surface methodology, Chin.
J. Environ. Eng., 10 (2016) 655–661.
- A. Weber, A.S. Ruhl, R.T. Amos, Investigating dominant
processes in ZVI permeable reactive barriers using reactive
transport modeling, J. Contam. Hydrol., 151 (2013) 68–82.
- S.G. Benner, D.W. Blowes, W.D. Gould, R.B. Herbert, C.J. Ptacek,
Geochemistry of a permeable reactive barrier for metals and
acid mine drainage, Environ. Sci. Technol., 33 (1999) 2793–2799.
- H. Deng, W. He, J. Hu, Numerical simulation of Fe0-PRB in
rehabilitating groundwater contaminated by nitrate, Chin.
Environ. Sci., 35 (2015) 2375–2381.
- S.W. Jeen, K.U. Mayer, R.W. Gihham, D.W. Blowes, Reactive
transport modeling of trichloroethene treatment with declining
reactivity of iron, Environ. Sci. Technol., 41 (2007) 1432–1438.
- O. Eljamal, K. Sasaki, T. Hirajima, Numerical simulation for
reactive solute transport of arsenic in permeable reactive
barrier column including zero-valent iron, Appl. Math. Modell.,
35 (2011) 5198–5207.
- C. Wanner, S. Zink, U. Eggenberger, U. Mäder, Assessing the
Cr(VI) reduction efficiency of a permeable reactive barrier using
Cr isotope measurements and 2D reactive transport modeling,
J. Contam. Hydrol., 131 (2012) 54–63.
- L. Li, C.H. Benson, E.M. Lawson, Modeling porosity reductions
caused by mineral fouling in continuous-wall permeable
reactive barriers, J. Contam. Hydrol., 83 (2006) 89–121.
- K.U. Mayer, D.W. Blowes, E.O. Frind, Reactive transport
modeling of an in situ reactive barrier for the treatment of
hexavalent chromium and trichloroethylene in groundwater,
Water Resour. Res., 37 (2001) 3091–3103.
- H. Jia, C. Wang, Adsorption and dechlorination of
2,4-dichlorophenol (2,4-DCP) on a multi-functional organosmectite
templated zero-valent iron composite, Chem. Eng. J.,
191 (2012) 202–209.
- R. Cheng, J. Wang, W. Zhang, Reductive dechlorination of
2,4-dichlorophenol using nanoscale Fe0: influencing factors
and possible mechanism, Sci. China Ser. B: Chem., 50 (2007)
574–579.
- J. Xu, J. Tang, S.A. Baig, X. Lv, X. Xu, Enhanced dechlorination of
2,4-dichlorophenol by Pd/Fe-Fe3O4 nanocomposites, J. Hazard.
Mater., 244 (2013) 628–636.