References
- M.Z. Alam, E.S. Ameem, S.A. Muyibi, N.A. Kabbashi, The
factors affecting the performance of activated carbon prepared
from oil palm empty fruit bunches for adsorption of phenol,
Chem. Eng. J., 155 (2009) 191–198.
- P. Khongkhaem, O. Suttinun, A. Intasiri, O. Pinyakong, E. Luepromchai,
Degradation of phenolic compounds in palm oil mill
effluent by silica‐immobilized bacteria in internal loop airlift
bioreactors, CLEAN-Soil Air Water, 44 (2016) 383–392.
- P. Phonepaseuth, V. Rakkiatsakul, B. Kachenchart, O. Suttinun,
E. Luepromchai, Phenolic compounds removal by grasses
and soil bacteria after land application of treated palm oil mill
effluent: a pot study, Environ. Eng. Res., 24 (2018) 127–136.
- P. Tosu, E. Luepromchai, O. Suttinun, Activation and immobilization
of phenol-degrading bacteria on oil palm residues for
enhancing phenols degradation in treated palm oil mill effluent,
Environ. Eng. Res., 20 (2015) 141–148.
- X. Sun, C. Wang, Y. Li, W. Wang, J. Wei, Treatment of
phenolic wastewater by combined UF and NF/RO processes,
Desalination, 355 (2015) 68–74.
- F. Banat, S. Al‐Asheh, L. Al‐Makhadmeh, Utilization of raw
and activated date pits for the removal of phenol from aqueous
solutions, Chem. Eng. Technol., 27 (2004) 80–86.
- L.G.C. Villegas, N. Mashhadi, M. Chen, D. Mukherjee,
K.E. Taylor, N. Biswas, A short review of techniques for phenol
removal from wastewater, Curr. Pollut. Rep., 2 (2016) 157–167.
- B.K. Ghosh, N.N. Ghosh, Applications of metal nanoparticles
as catalysts in cleaning dyes containing industrial effluents: a
review, J. Nanosci. Nanotechnol., 18 (2018) 3735–3758.
- C.R. Fonseca, J.L. Paiva, E.M. Rodriguez, F.J. Beltran,
A.C.S.C. Teixeira, Degradation of phenolic compounds in
aqueous sucrose solutions by ozonation, Ozone Sci. Eng., 39
(2017) 255–263.
- L. Zhou, H. Cao, C. Descorme, Y. Xie, Phenolic compounds
removal by wet air oxidation based processes, Front. Environ.
Sci. Eng., 12 (2018) 1–20.
- A. Kietkwanboot, H.T.M. Tran, O. Suttinun, Simultaneous
dephenolization and decolorization of treated palm oil mill
effluent by oil palm fiber-immobilized Trametes Hirsuta strain
AK 04, Water Air Soil Pollut., 226 (2015) 1–13.
- V. Limkhuansuwan, P. Chaiprasert, Decolorization of molasses
melanoidins and palm oil mill effluent phenolic compounds by
fermentative lactic acid bacteria, Int. J. Environ. Sci., 22 (2010)
1209–1217.
- Y. Zhou, L. Tang, G. Zeng, J. Chen, Y. Cai, G. Zhang. Y. Yang,
Y. Liu, C. Zhang, W. Tang, Mesoporous carbon nitride-based
biosensor for highly sensitive and selective analysis of phenol
and catechol in compost bioremediation, Biosens. Bioelectron.,
61 (2014) 519–525.
- U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic
degradation of dyes using TiO2-based photocatalysts:
a review, J. Hazard. Mater., 170 (2010) 520–529.
- J. Wang, C. Li, X. Luan, J. Li, B. Wang, L. Zhang, R. Xu, X. Zhang,
Investigation on solar photocatalytic activity of TiO2 loaded
composite: TiO2/Skeleton, TiO2/Dens, and TiO2/HAP, J. Mol.
Catal. A: Chem., 320 (2010) 62–67.
- S. Guan, L. Hao, Y. Lu, H. Yoshida, F. Pan, H. Asanuma,
Fabrication of oxygen-deficient TiO2 coatings with nanofiber
morphology for visible-light photocatalysis, Mater. Sci.
Semicond. process., 41 (2016) 358–363.
- S. Adishkumar, S. Kanmani, J. Rajesh Banu, Solar photocatalytic
treatment of phenolic wastewaters: influence of chlorides,
sulphates, aeration, liquid volume, and solar light intensity,
Desal. Wat. Treat., 52 (2014) 7957–7963.
- M.H. Alhaji, K. Sanaullah, S.F. Lim, A. Khan, C.N. Hipolito,
M.O. Abdullah, S.A. Bhawani, T. Jamil, Photocatalytic treatment
technology for palm oil mill effluent (POME)-a review, Process.
Saf. Environ., 102 (2016) 673–686.
- C.K. Cheng, M.R. Deraman, K.H. Ng, M.R. Khan, Preparation
of titania doped argentum photocatalyst and its photoactivity
towards palm oil mill effluent degradation, J. Cleaner Prod.,
112 (2016) 1128–1135.
- K.H. Ng, M.R. Khan, Y.H. Ng, S.S. Hossain, C.K. Cheng,
Restoration of liquid effluent from oil palm agroindustry in
Malaysia using UV/TiO2 and UV/ZnO photocatalytic systems:
a comparative study, J. Environ. Manage., 196 (2017) 674–680.
- M.O. Saeed, K. Azizli, M.H. Isa, M.J.K. Bashir, Application
of CCD in RSM to obtain optimize treatment of POME using
Fenton oxidation process, J. Water Process Eng., 8 (2015) 7–16.
- M.O. Saeed, K.A.M. Azizli, M.H. Isa, E.H. Ezechi, Treatment
of POME using Fenton oxidation process: removal efficiency,
optimization, and acidity condition, Desal. Wat. Treat., 57 (2016)
23750–23759.
- S. Mohajeri, H.A. Aziz, M.H. Isa, M.A. Zahed, M.J.K. Bashir,
M.N. Adlan, Application of the central composite design
for condition optimization for semi-aerobic landfill leachate
treatment using electrochemical oxidation, Water Sci. Technol.,
61 (2010) 1257–1266.
- A. Asadi, A.A.L. Zinatizadeh, M. Hasnain Isa, Performance
of intermittently aerated up-flow sludge bed reactor and
sequencing batch reactor treating industrial estate wastewater:
a comparative study, Bioresour. Technol., 123 (2012) 495–506.
- A. Yaqub, M.H. Isa, H. Ajab, Electrochemical degradation of
polycyclic aromatic hydrocarbons in synthetic solution and
produced water using a Ti/SnO2-Sb2O5-RuO2 anode, J. Environ.
Chem. Eng., 141 (2015) 1–8.
- L.P. Wong, M.H. Isa, M.J.K. Bashir, Disintegration of palm oil
mill effluent organic solids by ultrasonication: optimization by
response surface methodology, Process Saf. Environ. Prot., 114
(2018) 123–132.
- M. Yeber, E. Paul, C. Soto, Chemical and biological treatments
to clean oily wastewater: optimization of the photocatalytic
process using experimental design, Desal. Wat. Treat., 47 (2012)
295–299.
- F.E. Ergul, S. Sargın, G. Ongen, F.V. Sukan, Dephenolization and
decolorization of olive mill wastewater through sequential batch
and co-culture applications, World J. Microbiol. Biotechnol.,
27 (2011) 107–114.
- F. Venditti, F. Cuomo, A. Ceglie, P. Avino, M.V. Russo, F. Lopez,
Visible light caffeic acid degradation by carbon-doped titanium
dioxide, Langmuir, 31 (2015) 3627–3634.
- W. Li, T. Zeng, Preparation of TiO2 anatase nanocrystals by
TiCl4 hydrolysis with additive H2SO4, PLoS ONE, 6 (2011) 1–6.
- R. Kamaludin, M.H.D. Othman, S.H.S.A. Kadir, A.F. Ismail,
M.A. Rahman, J. Jaafar, Visible-light-driven photocatalytic
N-doped TiO2 for degradation of bisphenol A (BPA) and
reactive Black 5 (RB5) dye, Water Air Soil Pollut., 229 (2018)
1–11.
- A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for
water splitting, Chem. Soc. Rev., 38 (2009) 253–278.
- X. Chen, L. Liu, F. Huang, Black titanium dioxide (TiO2)
nanomaterials, Chem. Soc. Rev., 44 (2015) 1861–1885.
- L. Gonzalez-Reyes, I. Hernandez-Perez, L.D. Arceo, H. Dorantes-Rosales, E. Arce-Estrada, R. Suarez-Parra, J.J. Cruz-Rivera,
Temperature effects during Ostwald ripening on structural
and bandgap properties of TiO2 nanoparticles prepared by
sonochemical synthesis, Mater. Sci. Eng., 175 (2010) 9–13.
- L. Li, Y. Chen, S. Jiao, Z. Fang, X. Liu, Y. Xu, G. Pang, S. Feng,
Synthesis, microstructure, and properties of black anatase and
B phase TiO2 nanoparticles, Mater. Des., 100 (2016) 235–240.
- H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He, Y. He,
An overview on limitations of TiO2-based particles for
photocatalytic degradation of organic pollutants and the
corresponding countermeasures, Water Res., 79 (2015) 128–146.
- O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of
titanium dioxide, Prog. Solid State Chem., 32 (2004) 33–177.
- T. Trung, W.J. Cho, C.S. Ha, Preparation of TiO2 nanoparticles in
glycerol-containing solutions, Mater. Lett., 57 (2003) 2746–2750.
- K. Sing, Reporting physisorption data for gas/solid systems
with special reference to the determination of surface area and
porosity (Provisional), Pure Appl. Chem., 54 (1982) 2201–2218.
- X.L. Garcia-Montelongo, A. Martinez-de la Cruz, D. Contreras,
H.D. Mansilla, Optimized photocatalytic degradation of caffeic
acid by sol-gel TiO2, Water Sci. Technol., 71 (2015) 878–884.
- A. Tolosana-Moranchel, J. Anderson, J. Casas, M. Faraldos,
A. Bahamonde, Defining the role of substituents on adsorption
and photocatalytic degradation of phenolic compounds, J.
Environ. Chem. Eng., 5 (2017) 4612–4620.
- M.A. Zahed, H.A. Aziz, M.H. Isa, L. Mohajeri, Response
surface analysis to improve dispersed crude oil biodegradation,
CLEAN-Soil Air Water, 40 (2012) 262–267.
- I.A. Appavoo, J. Hu, Y. Huang, S.F.Y. Li, S.L. Ong, Response
surface modeling of carbamazepine (CBZ) removal by graphene-P25 nanocomposites/UVA process using central composite
design, Water Res., 57 (2014) 270–279.
- M.H. Isa, E.H. Ezechi, Z. Ahmed, S.F. Magram, S.R.M. Kutty,
Boron removal by electrocoagulation and recovery, Water Res.,
51 (2014) 113–123.
- J. Wu, H. Zhang, N. Oturan, Y. Wang, L. Chen, M.A. Oturan,
Application of response surface methodology to the removal
of the antibiotic tetracycline by electrochemical process
using carbon-felt cathode and DSA (Ti/RuO2–IrO2) anode,
Chemosphere, 87 (2012) 614–620.
- N. Quici, M.I. Litter, Heterogeneous photocatalytic degradation
of gallic acid under different experimental conditions,
Photochem. Photobiol. Sci., 8 (2009) 975–984.
- V. Nogueira, I. Lopes, T. Rocha-Santos, F. Gonçalves, A. Duarte,
R. Pereira, Photocatalytic treatment of olive oil mill wastewater
using TiO2 and Fe2O3 nanomaterials, Water Air Soil Pollut.,
227 (2016) 88.
- S. Ahmed, M. Rasul, W.N. Martens, R. Brown, M. Hashib,
Advances in heterogeneous photocatalytic degradation of
phenols and dyes in wastewater: a review, Water Air Soil
Pollut., 215 (2011) 3–29.
- Z. Zheng, B. Huang, J. Lu, Z. Wang, X. Qin, X. Zhang, Y. Dai,
M.H. Whangbo, Hydrogenated titania: synergy of surface
modification and morphology improvement for enhanced
photocatalytic
activity, Chem. Commun., 48 (2012) 5733–5735.
- H. Cui, W. Zhao, C. Yang, H. Yin, T. Lin, Y. Shan, Y. Xie,
H. Gu, F. Huang, Black TiO2 nanotube arrays for high-efficiency
photoelectrochemical water-splitting, J. Mater. Chem. A, 2 (2014)
8612–8616.
- M.N. Chong, B. Jin, C.W. Chow, C. Saint, Recent developments
in photocatalytic water treatment technology: a review, Water
Res., 44 (2010) 2997–3027.
- U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic
degradation of organic contaminants over titanium dioxide: a
review of fundamentals, progress, and problems, J. Photochem.
Photobiol., C, 9 (2008) 1–12.