References

  1. M.Z. Alam, E.S. Ameem, S.A. Muyibi, N.A. Kabbashi, The factors affecting the performance of activated carbon prepared from oil palm empty fruit bunches for adsorption of phenol, Chem. Eng. J., 155 (2009) 191–198.
  2. P. Khongkhaem, O. Suttinun, A. Intasiri, O. Pinyakong, E. Luepromchai, Degradation of phenolic compounds in palm oil mill effluent by silica‐immobilized bacteria in internal loop airlift bioreactors, CLEAN-Soil Air Water, 44 (2016) 383–392.
  3. P. Phonepaseuth, V. Rakkiatsakul, B. Kachenchart, O. Suttinun, E. Luepromchai, Phenolic compounds removal by grasses and soil bacteria after land application of treated palm oil mill effluent: a pot study, Environ. Eng. Res., 24 (2018) 127–136.
  4. P. Tosu, E. Luepromchai, O. Suttinun, Activation and immobilization of phenol-degrading bacteria on oil palm residues for enhancing phenols degradation in treated palm oil mill effluent, Environ. Eng. Res., 20 (2015) 141–148.
  5. X. Sun, C. Wang, Y. Li, W. Wang, J. Wei, Treatment of phenolic wastewater by combined UF and NF/RO processes, Desalination, 355 (2015) 68–74.
  6. F. Banat, S. Al‐Asheh, L. Al‐Makhadmeh, Utilization of raw and activated date pits for the removal of phenol from aqueous solutions, Chem. Eng. Technol., 27 (2004) 80–86.
  7. L.G.C. Villegas, N. Mashhadi, M. Chen, D. Mukherjee, K.E. Taylor, N. Biswas, A short review of techniques for phenol removal from wastewater, Curr. Pollut. Rep., 2 (2016) 157–167.
  8. B.K. Ghosh, N.N. Ghosh, Applications of metal nanoparticles as catalysts in cleaning dyes containing industrial effluents: a review, J. Nanosci. Nanotechnol., 18 (2018) 3735–3758.
  9. C.R. Fonseca, J.L. Paiva, E.M. Rodriguez, F.J. Beltran, A.C.S.C. Teixeira, Degradation of phenolic compounds in aqueous sucrose solutions by ozonation, Ozone Sci. Eng., 39 (2017) 255–263.
  10. L. Zhou, H. Cao, C. Descorme, Y. Xie, Phenolic compounds removal by wet air oxidation based processes, Front. Environ. Sci. Eng., 12 (2018) 1–20.
  11. A. Kietkwanboot, H.T.M. Tran, O. Suttinun, Simultaneous dephenolization and decolorization of treated palm oil mill effluent by oil palm fiber-immobilized Trametes Hirsuta strain AK 04, Water Air Soil Pollut., 226 (2015) 1–13.
  12. V. Limkhuansuwan, P. Chaiprasert, Decolorization of molasses melanoidins and palm oil mill effluent phenolic compounds by fermentative lactic acid bacteria, Int. J. Environ. Sci., 22 (2010) 1209–1217.
  13. Y. Zhou, L. Tang, G. Zeng, J. Chen, Y. Cai, G. Zhang. Y. Yang, Y. Liu, C. Zhang, W. Tang, Mesoporous carbon nitride-based biosensor for highly sensitive and selective analysis of phenol and catechol in compost bioremediation, Biosens. Bioelectron., 61 (2014) 519–525.
  14. U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review, J. Hazard. Mater., 170 (2010) 520–529.
  15. J. Wang, C. Li, X. Luan, J. Li, B. Wang, L. Zhang, R. Xu, X. Zhang, Investigation on solar photocatalytic activity of TiO2 loaded composite: TiO2/Skeleton, TiO2/Dens, and TiO2/HAP, J. Mol. Catal. A: Chem., 320 (2010) 62–67.
  16. S. Guan, L. Hao, Y. Lu, H. Yoshida, F. Pan, H. Asanuma, Fabrication of oxygen-deficient TiO2 coatings with nanofiber morphology for visible-light photocatalysis, Mater. Sci. Semicond. process., 41 (2016) 358–363.
  17. S. Adishkumar, S. Kanmani, J. Rajesh Banu, Solar photocatalytic treatment of phenolic wastewaters: influence of chlorides, sulphates, aeration, liquid volume, and solar light intensity, Desal. Wat. Treat., 52 (2014) 7957–7963.
  18. M.H. Alhaji, K. Sanaullah, S.F. Lim, A. Khan, C.N. Hipolito, M.O. Abdullah, S.A. Bhawani, T. Jamil, Photocatalytic treatment technology for palm oil mill effluent (POME)-a review, Process. Saf. Environ., 102 (2016) 673–686.
  19. C.K. Cheng, M.R. Deraman, K.H. Ng, M.R. Khan, Preparation of titania doped argentum photocatalyst and its photoactivity towards palm oil mill effluent degradation, J. Cleaner Prod., 112 (2016) 1128–1135.
  20. K.H. Ng, M.R. Khan, Y.H. Ng, S.S. Hossain, C.K. Cheng, Restoration of liquid effluent from oil palm agroindustry in Malaysia using UV/TiO2 and UV/ZnO photocatalytic systems: a comparative study, J. Environ. Manage., 196 (2017) 674–680.
  21. M.O. Saeed, K. Azizli, M.H. Isa, M.J.K. Bashir, Application of CCD in RSM to obtain optimize treatment of POME using Fenton oxidation process, J. Water Process Eng., 8 (2015) 7–16.
  22. M.O. Saeed, K.A.M. Azizli, M.H. Isa, E.H. Ezechi, Treatment of POME using Fenton oxidation process: removal efficiency, optimization, and acidity condition, Desal. Wat. Treat., 57 (2016) 23750–23759.
  23. S. Mohajeri, H.A. Aziz, M.H. Isa, M.A. Zahed, M.J.K. Bashir, M.N. Adlan, Application of the central composite design for condition optimization for semi-aerobic landfill leachate treatment using electrochemical oxidation, Water Sci. Technol., 61 (2010) 1257–1266.
  24. A. Asadi, A.A.L. Zinatizadeh, M. Hasnain Isa, Performance of intermittently aerated up-flow sludge bed reactor and sequencing batch reactor treating industrial estate wastewater: a comparative study, Bioresour. Technol., 123 (2012) 495–506.
  25. A. Yaqub, M.H. Isa, H. Ajab, Electrochemical degradation of polycyclic aromatic hydrocarbons in synthetic solution and produced water using a Ti/SnO2-Sb2O5-RuO2 anode, J. Environ. Chem. Eng., 141 (2015) 1–8.
  26. L.P. Wong, M.H. Isa, M.J.K. Bashir, Disintegration of palm oil mill effluent organic solids by ultrasonication: optimization by response surface methodology, Process Saf. Environ. Prot., 114 (2018) 123–132.
  27. M. Yeber, E. Paul, C. Soto, Chemical and biological treatments to clean oily wastewater: optimization of the photocatalytic process using experimental design, Desal. Wat. Treat., 47 (2012) 295–299.
  28. F.E. Ergul, S. Sargın, G. Ongen, F.V. Sukan, Dephenolization and decolorization of olive mill wastewater through sequential batch and co-culture applications, World J. Microbiol. Biotechnol., 27 (2011) 107–114.
  29. F. Venditti, F. Cuomo, A. Ceglie, P. Avino, M.V. Russo, F. Lopez, Visible light caffeic acid degradation by carbon-doped titanium dioxide, Langmuir, 31 (2015) 3627–3634.
  30. W. Li, T. Zeng, Preparation of TiO2 anatase nanocrystals by TiCl4 hydrolysis with additive H2SO4, PLoS ONE, 6 (2011) 1–6.
  31. R. Kamaludin, M.H.D. Othman, S.H.S.A. Kadir, A.F. Ismail, M.A. Rahman, J. Jaafar, Visible-light-driven photocatalytic N-doped TiO2 for degradation of bisphenol A (BPA) and reactive Black 5 (RB5) dye, Water Air Soil Pollut., 229 (2018) 1–11.
  32. A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., 38 (2009) 253–278.
  33. X. Chen, L. Liu, F. Huang, Black titanium dioxide (TiO2) nanomaterials, Chem. Soc. Rev., 44 (2015) 1861–1885.
  34. L. Gonzalez-Reyes, I. Hernandez-Perez, L.D. Arceo, H. Dorantes-Rosales, E. Arce-Estrada, R. Suarez-Parra, J.J. Cruz-Rivera, Temperature effects during Ostwald ripening on structural and bandgap properties of TiO2 nanoparticles prepared by sonochemical synthesis, Mater. Sci. Eng., 175 (2010) 9–13.
  35. L. Li, Y. Chen, S. Jiao, Z. Fang, X. Liu, Y. Xu, G. Pang, S. Feng, Synthesis, microstructure, and properties of black anatase and B phase TiO2 nanoparticles, Mater. Des., 100 (2016) 235–240.
  36. H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He, Y. He, An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures, Water Res., 79 (2015) 128–146.
  37. O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem., 32 (2004) 33–177.
  38. T. Trung, W.J. Cho, C.S. Ha, Preparation of TiO2 nanoparticles in glycerol-containing solutions, Mater. Lett., 57 (2003) 2746–2750.
  39. K. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional), Pure Appl. Chem., 54 (1982) 2201–2218.
  40. X.L. Garcia-Montelongo, A. Martinez-de la Cruz, D. Contreras, H.D. Mansilla, Optimized photocatalytic degradation of caffeic acid by sol-gel TiO2, Water Sci. Technol., 71 (2015) 878–884.
  41. A. Tolosana-Moranchel, J. Anderson, J. Casas, M. Faraldos, A. Bahamonde, Defining the role of substituents on adsorption and photocatalytic degradation of phenolic compounds, J. Environ. Chem. Eng., 5 (2017) 4612–4620.
  42. M.A. Zahed, H.A. Aziz, M.H. Isa, L. Mohajeri, Response surface analysis to improve dispersed crude oil biodegradation, CLEAN-Soil Air Water, 40 (2012) 262–267.
  43. I.A. Appavoo, J. Hu, Y. Huang, S.F.Y. Li, S.L. Ong, Response surface modeling of carbamazepine (CBZ) removal by graphene-P25 nanocomposites/UVA process using central composite design, Water Res., 57 (2014) 270–279.
  44. M.H. Isa, E.H. Ezechi, Z. Ahmed, S.F. Magram, S.R.M. Kutty, Boron removal by electrocoagulation and recovery, Water Res., 51 (2014) 113–123.
  45. J. Wu, H. Zhang, N. Oturan, Y. Wang, L. Chen, M.A. Oturan, Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2–IrO2) anode, Chemosphere, 87 (2012) 614–620.
  46. N. Quici, M.I. Litter, Heterogeneous photocatalytic degradation of gallic acid under different experimental conditions, Photochem. Photobiol. Sci., 8 (2009) 975–984.
  47. V. Nogueira, I. Lopes, T. Rocha-Santos, F. Gonçalves, A. Duarte, R. Pereira, Photocatalytic treatment of olive oil mill wastewater using TiO2 and Fe2O3 nanomaterials, Water Air Soil Pollut., 227 (2016) 88.
  48. S. Ahmed, M. Rasul, W.N. Martens, R. Brown, M. Hashib, Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: a review, Water Air Soil Pollut., 215 (2011) 3–29.
  49. Z. Zheng, B. Huang, J. Lu, Z. Wang, X. Qin, X. Zhang, Y. Dai, M.H. Whangbo, Hydrogenated titania: synergy of surface modification and morphology improvement for enhanced photocatalytic activity, Chem. Commun., 48 (2012) 5733–5735.
  50. H. Cui, W. Zhao, C. Yang, H. Yin, T. Lin, Y. Shan, Y. Xie, H. Gu, F. Huang, Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting, J. Mater. Chem. A, 2 (2014) 8612–8616.
  51. M.N. Chong, B. Jin, C.W. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water Res., 44 (2010) 2997–3027.
  52. U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress, and problems, J. Photochem. Photobiol., C, 9 (2008) 1–12.