References
- T. Anirudhan, M. Ramachandran, Removal of 2,4,6-trichlorophenol from water and petroleum refinery industry
effluents by surfactant-modified bentonite, J. Water Process
Eng., 1 (2014) 46–53.
- J. Fan, J. Zhang, C. Zhang, L. Ren, Q. Shi, Adsorption of
2,4,6-trichlorophenol from aqueous solution onto activated
carbon derived from loosestrife, Desalination, 267 (2011)
139–146.
- Z. Zango, Z.N. Garba, N.A. Bakar, W. Tan, M.A. Bakar,
Adsorption studies of Cu2+–Hal nanocomposites for the removal
of 2,4,6-trichlorophenol, Appl. Clay Sci., 132 (2016) 68–78.
- Z.N. Garba, A.A. Rahim, Optimization of activated carbon
preparation conditions from Prosopis africana seed hulls for the
removal of 2,4,6-trichlorophenol from aqueous solution, Desal.
Wat. Treat., 56 (2015) 2879–2889.
- B. Hameed, I. Tan, A. Ahmad, Adsorption isotherm, kinetic
modeling and mechanism of 2,4,6-trichlorophenol on coconut
husk-based activated carbon, Chem. Eng. J., 144 (2008) 235–244.
- B. Gao, L. Liu, J. Liu, F. Yang, Photocatalytic degradation of
2,4,6-tribromophenol over Fe-doped ZnIn2S4: stable activity and
enhanced debromination, Appl. Catal., B, 129 (2013) 89–97.
- I. Tan, A. Ahmad, B. Hameed, Adsorption isotherms, kinetics,
thermodynamics and desorption studies of 2,4,6-trichlorophenol
on oil palm empty fruit bunch-based activated carbon, J. Hazard.
Mater., 164 (2009) 473–482.
- H. Ji, F. Chang, X. Hu, W. Qin, J. Shen, Photocatalytic degradation
of 2,4,6-trichlorophenol over g-C3N4 under visible light
irradiation, Chem. Eng. J., 218 (2013) 183–190.
- L. Liu, F. Chen, F. Yang, Y. Chen, J. Crittenden, Photocatalytic
degradation of 2,4-dichlorophenol using nanoscale Fe/TiO2,
Chem. Eng. J., 181 (2012) 189–195.
- E. Bazrafshan, T.J. Al-Musawi, M.F. Silva, A.H. Panahi,
M. Havangi, F.K. Mostafapur, Photocatalytic degradation of
catechol using ZnO nanoparticles as catalyst: optimizing the
experimental parameters using the Box–Behnken statistical
methodology and kinetic studies, Microchem. J., 147 (2019)
643–653.
- T.J. Al-Musawi, H. Kamani, E. Bazrafshan, A.H. Panahi,
M.F. Silva, G. Abi, Optimization the effects of physicochemical
parameters on the degradation of cephalexin in sono-fenton
reactor by using Box–Behnken response surface methodology,
Catal. Lett., 149 (2019) 1186–1196.
- H. Kamani, S. Nasseri, M. Khoobi, R.N. Nodehi, A.H. Mahvi,
Sonocatalytic degradation of humic acid by N-doped TiO2
nano-particle in aqueous solution, J. Environ. Health Sci. Eng.,
14 (2016) 3.
- E. Bazrafshan, M. Sobhanikia, F. Mostafapour, H. Kamani,
D. Balarak, Chromium biosorption from aqueous environments
by mucilaginous seeds of Cydonia oblonga: kinetic and thermodynamic
studies, Global Nest J., 19 (2017) 269–277.
- M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff,
K. Sopian, Synthesis and catalytic activity of TiO2 nanoparticles
for photochemical oxidation of concentrated chlorophenols
under direct solar radiation, Int. J. Electrochem. Sci., 7 (2012)
4871–4888.
- H. Kamani, E. Bazrafshan, S.D. Ashrafi, F. Sancholi, Efficiency
of sono-nano-catalytic process of TiO2 nano-particle in removal
of erythromycin and metronidazole from aqueous solution,
J. Mazandaran Univ. Med. Sci., 27 (2017) 140–154.
- M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff,
K. Sopian, Visible light photocatalytic activity of Fe3+-doped ZnO
nanoparticle prepared via sol–gel technique, Chemosphere,
91 (2013) 1604–1611.
- M. Galedari, M.M. Ghazi, S.R. Mirmasoomi, Photocatalytic
process for the tetracycline removal under visible light:
presenting a degradation model and optimization using response
surface methodology (RSM), Chem. Eng. Res. Des.,
145 (2019) 323–333.
- S. Mortazavian, A. Saber, D.E. James, Optimization of
photocatalytic degradation of Acid Blue 113 and Acid Red 88
textile dyes in a UV-C/TiO2 suspension system: application of
response surface methodology (RSM), Catalysts, 9 (2019) 360.
- P. Chawla, S.K. Sharma, A.P. Toor, Optimization and modeling
of UV-TiO2 mediated photocatalytic degradation of golden
yellow dye through response surface methodology, Chem. Eng.
Commun., 206 (2019) 1123–1138.
- K. Nadafi, N. Rastkari, R. Nabizadeh, M. Gholami, M. Sarkhosh,
Performance of modified natural zeolite for removal
of 2,4,6-trichlorophenol from aqueous solutions, Toloo-e-Behdasht, 12 (2014).
- J. Yang, H. Chen, J. Gao, T. Yan, F. Zhou, S. Cui, W. Bi, Synthesis
of Fe3O4/g-C3N4 nanocomposites and their application in the
photodegradation of 2,4,6-trichlorophenol under visible light,
Mater. Lett., 164 (2016) 183–189.
- C.-L. Zhang, S.-J. Cui, Y. Wang, Adsorption removal of
pefloxacin from water by halloysite nanotubes, J. Ind. Eng.
Chem., 23 (2015) 12–15.
- M. Kamali, K. Dindarlo, O. Rahmaniyan, V. Alipoor, Nanophotocatalytic
activity of UV/Fe-doped TiO2 for removal of
cis-chlordane from water, J. Prevent. Med., 3 (2017) 52–43.
- S. Yuan, X. Mao, A.N. Alshawabkeh, Efficient degradation of
TCE in groundwater using Pd and electro-generated H2 and
O2: a shift in pathway from hydrodechlorination to oxidation
in the presence of ferrous ions, Environ. Sci. Technol., 46 (2012)
3398–3405.
- A. Sobczyński, Ł. Duczmal, W. Zmudziński, Phenol destruction
by photocatalysis on TiO2: an attempt to solve the reaction
mechanism, J. Mol. Catal. A: Chem., 213 (2004) 225–230.
- L. Xu, J. Wang, Degradation of 2,4,6-trichlorophenol using
magnetic nanoscaled Fe3O4/CeO2 composite as a heterogeneous
Fenton-like catalyst, Sep. Purif. Technol., 149 (2015) 255–264.
- S.-N. Nam, H. Cho, J. Han, N. Her, J. Yoon, Photocatalytic
degradation of acesulfame K: optimization using the Box–Behnken design (BBD), Process Saf. Environ. Prot., 113 (2018)
10–21.
- P. Singh, A. Dhir, V.K. Sangal, Optimization of photocatalytic
process parameters for the degradation of acrylonitrile using
Box–Behnken design, Desal. Wat. Treat., 55 (2015) 1501–1508.
- S. Sohrabi, F. Akhlaghian, Modeling and optimization of phenol
degradation over copper-doped titanium dioxide photocatalyst
using response surface methodology, Process Saf. Environ.
Prot., 99 (2016) 120–128.