References
- C.I. Pearce, J.R. Lloyd, J.T. Guthrie, The removal of color from
textile wastewater using whole bacterial cells: a review, Dyes
Pigm., 58 (2003) 179–196.
- A.B. Dos Santos, F.J. Cervantes, J.B. van Lier, A review paper on
current technologies for decolourization of textile wastewaters:
perspectives for anaerobic biotechnology, Bioresour. Technol.,
98 (2007) 2369–2385.
- A.G.S. Prado, J.D. Torres, E.A. Faria, S.C.L. Dias, Comparative
adsorption studies of indigo carmine dye on chitin and chitosan,
J. Colloid Interface Sci., 277 (2004) 43–47.
- M.M. Joshi, N.K. Labhsetwar, P.A. Mangrulkar, S.N. Tijare,
S.P. Kamble, S.S. Rayalu, Visible light-induced photoreduction
of methyl orange by N-doped mesoporous titania, Appl. Catal.,
A, 357 (2009) 26–33.
- S. Srivastava, R. Sinha, D. Roy, Toxicological effects of malachite
green, Aquat. Toxicol., 66 (2004) 319–329.
- W. Cheng, S.-G. Wang, L. Lu, W.-X. Gong, X.-W. Liu, B.-Y. Gao,
H.-Y. Zhang, Removal of malachite green (MG) from aqueous
solutions by native and heat-treated anaerobic granular sludge,
Biochem. Eng. J., 39 (2008) 538–546.
- Z. Bekçi, C. Özveri, Y. Seki, K. Yurdakoç, Sorption of malachite
green on chitosan bead, J. Hazard. Mater., 154 (2008) 254–261.
- L.A. Pérez-Estrada, A. Agüera, M.D. Hernando, S. Malato,
A.R. Fernández-Alba, Photodegradation of malachite green
under natural sunlight irradiation: kinetic and toxicity of the
transformation products, Chemosphere, 70 (2008) 2068–2075.
- M. Farhadian, M. Kazemzad, Photocatalytic degradation of
malachite green by magnetic photocatalyst, Synth. React. Inorg.
Met.-Org. Nano-Metal Chem., 46 (2016) 458–463.
- S.K. Kansal, M. Singh, D. Sud, Studies on photodegradation
of two commercial dyes in aqueous phase using different
photocatalysts, J. Hazard. Mater., 141 (2007) 581–590.
- C. Hachem, F. Bocquillon, O. Zahraa, M. Bouchy, Decolourization
of textile industry wastewater by the photocatalytic degradation
process, Dyes Pigm., 49 (2001) 117–125.
- M. Barjasteh-Moghaddam, A. Habibi-Yangjeh, Effect of operational
parameters on photodegradation of methylene blue on
ZnS nanoparticles prepared in presence of an ionic liquid as
a highly efficient photocatalyst, J. Iran. Chem. Soc., 8 (2011)
S169–S175.
- F. Sayılkan, M. Asiltürk, P. Tatar, N. Kiraz, E. Arpac, H. Sayılkan,
Photocatalytic performance of Sn-doped TiO2 nanostructured
mono and double-layer thin films for Malachite Green dye
degradation under UV and vis-lights, J. Hazard. Mater., 144 (2007)
140–146.
- N. Modirshahla, M.A. Behnajady, Photooxidative degradation
of Malachite Green (MG) by UV/H2O2: Influence of operational
parameters and kinetic modeling, Dyes Pigm., 70 (2006) 54–59.
- L. Papinutti, N. Mouso, F. Forchiassin, Removal and degradation
of the fungicide dye malachite green from aqueous solution
using the system wheat bran–Fomes sclerodermeus, Enzyme
Microb. Technol., 39 (2006) 848–853.
- S. Sambasivam, D.P. Joseph, D.R. Reddy, B.K. Reddy,
C.K. Jayasankar, Synthesis and characterization of thiophenol
passivated Fe-doped ZnS nanoparticles, Mater. Sci. Eng., B,
150 (2008) 125–129.
- N. Daneshvar, M. Ayazloo, A.R. Khataee, M. Pourhassan,
Biological decolorization of dye solution containing Malachite
Green by microalgae Cosmarium sp., Bioresour. Technol., 98
(2007) 1176–1182.
- M.A. Behnajady, N. Modirshahla, M. Shokri, B. Vahid, Effect
of operational parameters on degradation of Malachite Green
by ultrasonic irradiation, Ultrason. Sonochem., 15 (2008)
1009–1014.
- M.Y. Ghaly, G. Härtel, R. Mayer, R. Haseneder, Photochemical
oxidation of p-chlorophenol by UV/H2O2 and photo-Fenton
process. A comparative study, Waste Manage., 21 (2001) 41–47.
- C.A.K. Gouvea, F. Wypych, S.G. Moraes, N. Duran, N. Nagata,
P. Peralta-Zamora, Semiconductor-assisted photocatalytic
degradation of reactive dyes in aqueous solution, Chemosphere,
40 (2000) 433–440.
- W.S. Kuo, L.N. Wu, Fenton degradation of 4-chlorophenol
contaminated water promoted by solar irradiation, Sol. Energy,
84 (2010) 59–65.
- J. Tolia, M. Chakraborty, Z. Murthy, Photocatalytic degradation
of malachite green dye using doped and undoped ZnS
nanoparticles, Polish J. Chem. Technol., 14 (2012) 16–21.
- K.L. Ameta, N. Papnai, R. Ameta, Photocatalytic degradation
of malachite green using nano-sized cerium-iron oxide, Orbital
Electron. J. Chem., 6 (2014) 14–19.
- R. Ramachandran, M. Sathiya, K. Ramesha, A.S. Prakash, G.
Madras, A.K. Shukla, Photocatalytic properties of KBiO3 and
LiBiO3 with tunnel structures, J. Chem. Sci., 123 (2011) 517–524.
- A.R. Nanakkal, L.K. Alexander, Photocatalytic activity
of graphene/ZnO nanocomposite fabricated by two-step
electrochemical route, J. Chem. Sci., 129 (2017) 95–102.
- A. Khan, U. Alam, S. Zafar, M. Muneer, Fe (III)-grafted K-doped
gC3N4/rGO composite photocatalyst with efficient activity
towards the degradation of organic pollutants, J. Chem. Sci., 130
(2018) 142.
- J. Yan, Z. Chen, H. Ji, Z. Liu, X. Wang, Y. Xu, X. She, L. Huang,
L. Xu, H. Xu, Construction of a 2D graphene-like MoS2/C3N4
heterojunction with enhanced visible‐light photocatalytic
activity and photoelectrochemical activity, Chem. Eur. J., 22
(2016) 4764–4773.
- M. Malathi, K. Sreenu, G. Ravi, P.V. Kumar, C.H.S. Reddy, R.
Guje, R. Velchuri, M. Vithal, Low-temperature synthesis of
fluorite-type Ce-based oxides of composition Ln2Ce2O7 (Ln = Pr,
Nd and Eu): photodegradation and luminescence studies, J.
Chem. Sci., 129 (2017) 1193–1203.
- M.C. Hatnean, M.R. Lees, G. Balakrishnan, Growth of singlecrystals
of rare-earth zirconate pyrochlores, Ln2Zr2O7 (with
Ln = La, Nd, Sm, and Gd) by the floating zone technique, J.
Cryst. Growth, 418 (2015) 1–6.
- B.P. Mandal, A.K. Tyagi, Pyrochlores: potential multifunctional
materials, Barc Newsl., 313 (2010) 6–13.
- M.P. Pechini, Method of Preparing Lead and Alkaline Earth
Titanates and Niobates and Coating Method Using The Same to
Form a Capacitor, US3330697A, 1967.
- A.J. Carrillo, D.P. Serrano, P. Pizarro, J.M. Coronado, Design of
Efficient Mn-Based Redox Materials for Thermochemical Heat
Storage at High Temperatures, AIP Conf. Proc., 2016, p. 50009.
- P.C. Ribeiro, A.C.F. de M. Costa, R.H.G.A. Kiminami, J.M.
Sasaki, H.L. Lira, Synthesis of TiO2 by the pechini method and
photocatalytic degradation of methyl red, Mater. Res., 16 (2013)
468–472.
- A.E. Danks, S.R. Hall, Z. Schnepp, The evolution of ‘sol–gel’
chemistry as a technique for materials synthesis, Mater. Horiz.,
3 (2016) 91–112.
- T.O.L. Sunde, T. Grande, M.-A. Einarsrud, Modified Pechini
Synthesis of Oxide Powders and Thin Films, Handbook of
Sol-Gel Science and Technology, T.O.L. Sunde, T. Gd. M.-A.
Einarsrud, Modif. Pechini Synth. Oxide Powders Thin Film.
Handb. Sol-Gel Sci. Technol., 1–30.Y., 2016, pp. 1–30.
- L. Zhang, J. Yang, J. Li, A novel composite cathode for
intermediate temperature solid oxide fuel cell, J. Power Sources,
269 (2014) 723–726.
- APHA, Standard Method for Examination of Water and
Wastewater, 23rd ed., American Public Health Association,
2017.
- T.J.B. Holland, S.A.T. Redfern, Unit cell refinement from
powder diffraction data: the use of regression diagnostics,
Mineral. Mag., 61 (2006) 65–77.
- R.D. Shannon, Revised effective ionic radii and systematic
studies of interatomic distances in halides and chalcogenides,
Acta Crystallogr., Sect. A: Found. Crystallogr., A32 (1976)
751–767.
- T.S. Jamil, E.S. Mansor, R.A. Nasr, Degradation of Lindane
using two nanosized BiOXs and their heterojunction under
visible light, 57 (2016) 14750–14761.
- Y. Zhang, J. Yan, Q. Li, C. Qu, L. Zhang, W. Xie, Optical and
structural properties of Cu-doped β-Ga2O3 films, Mater. Sci.
Eng., B, 176 (2011) 846–849.
- K. Sayama, H. Arakawa, Effect of Na2CO3 addition on
photocatalytic decomposition of liquid water over various
semiconductor catalysis, J. Photochem. Photobiol., A, 77 (1994)
243–247.
- K. Sayama, H. Arakawa, Effect of carbonate addition on the
photocatalytic decomposition of liquid water over a ZrO2
catalyst, J. Photochem. Photobiol., A, 94 (1996) 67–76.
- M. Uno, A. Kosuga, M. Okui, K. Horisaka, H. Muta, K. Kurosaki,
S. Yamanaka, Photoelectrochemical study of lanthanide
zirconium oxides, Ln2Zr2O7 (Ln = La, Ce, Nd, and Sm), J. Alloys
Compd., 420 (2006) 291–297.
- H.A. Abbas, T.S. Jamil, F.F. Hammad, Synthesis, characterization
and photocatalytic activity of nano sized undoped and Ga
doped SrTi0.7Fe0.3O3 for 2,4,6-trichlorophenol photodegradation,
J. Environ. Chem. Eng., 4 (2016) 2384–2393.
- H.A. Abbas, T.S. Jamil, F.F. Hammad, Journal of environmental
chemical engineering synthesis, characterization and photocatalytic
activity of nano-sized photodegradation, Biochem.
Pharmacol., 4 (2016) 2384–2393.
- T.S. Jamil, H.A. Abbas, R.A. Nasr, A.A. El-Kady, M.I.M. Ibrahim,
Detoxification of aflatoxin B1using nano-sized Sc-doped
SrTi0.7Fe0.3O3 under visible light, J. Photochem. Photobiol., A,
341 (2017) 127–135.
- H.A. Abbas, A.M. Youssef, F.F. Hammad, A.M.A. Hassan,
Z.M. Hanafi, Electrical properties of nano-sized indium tin
oxide (ITO) doped with CuO, Cr2O3 and ZrO2, J. Nanopart. Res.,
16 (2014) 2518.
- M.C. Biesinger, L.W.M. Lau, A.R. Gerson, R.S.C. Smart,
Resolving surface chemical states in XPS analysis of first row
transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn,
Appl. Surf. Sci., 257 (2010) 887–898.
- Z. Liang, L. Zhao, W. Meng, C. Zhong, S. Wei, B. Dong, Z.
Xu, L. Wan, S. Wang, Tungsten-doped vanadium dioxide thin
films as smart windows with self-cleaning and energy-saving
functions, J. Alloys Compd., 694 (2017) 124–131.
- B. Yous, S. Robin, A. Donnadieu, G. Dufour, C. Maillot, H. Roulet,
C. Senemaud, Chemical vapor deposition of tungsten oxides: a
comparative study by X-ray photoelectron spectroscopy, X-ray
diffraction and reflection high energy electron diffraction,
Mater. Res. Bull., 19 (1984) 1349–1354.
- S.E.A.S. El-deen, N.S. Ammar, T.S. Jamil, Adsorption behavior
of Co (II) and Ni (II) from an aqueous solutions onto titanate
nanotubes, 24 (2016) 455–466.
- M.A. Rauf, M.A. Meetani, S. Hisaindee, An overview on the
photocatalytic degradation of azo dyes in the presence of TiO2
doped with selective transition metals, Desalination, 276 (2011)
13–27.
- R. Rathore, R. Ameta, S.C. Ameta, Photocatalytic degradation of
malachite green over nickel vanadate powder, 4 (2014) 213–220.
- T.S. Jamil, H.A. Abbas, R.A. Nasr, R.-N. Vannier, Visible
light activity of BaFe1-xCuxO3-δ as photocatalyst for atrazine
degradation, Ecotoxicol. Environ. Saf., 163 (2018) 620–628.
- S.K. Ray, D. Dhakal, S.W. Lee, Insight into malachite green
degradation, Mechanism and pathways by morphology-tuned
a -NiMoO4 photocatalyst, 4 (2018) 552–563.
- G.A.O. Guandao, Z. Aiyong, Z. Meng, C. Jinlong, Z. Quanxing,
Photocatalytic degradation mechanism of malachite green
under visible light irradiation over novel biomimetic photocatalyst
HMS-FePcs, Chin. J. Catal., 29 (2008) 426–430.
- X. Meng, Z. Zhang, Synthesis, analysis, and testing of BiOBr-Bi2WO6 photocatalytic heterojunction semiconductors, Int. J.
Photoenergy, 2015 (2015), https://doi.org/10.1155/2015/630476.