References

  1. M. Grassi, G. Kaykioglu, V. Belgiorno, Removal of Emerging Contaminants from Water and Wastewater by Adsorption Process, G. Lofrano, Ed., Emerging Compounds Removal from Wastewater, Springer International Publishing, Salerno, 2012, pp. 15–38.
  2. I. Michael-Kordatou, C. Michael, X. Duan, X. He, D.D. Dionysiou, M.A. Mills, D. Fatta-Kassinos, Dissolved effluent organic matter: characteristics and potential implications in wastewater treatment and reuse applications, Water Res., 77 (2015) 213–248.
  3. L. Groisman, E. Rorman, Identification and Characterization of Toxic Organic Contaminants in Effluents Used for Irrigation, Israel ministry of Health Report No. 7-2-3, 2009. Available at: http://www.sviva.gov.il/InfoServices/ReservoirInfo/DocLib4/R0201-R0300/R0287AbstractEng.pdf
  4. N. Haruvy, Agricultural reuse of wastewater: nation-wide cost-benefit analysis, Agric. Ecosyst. Environ., 66 (1997) 113–119.
  5. N. Haruvy, S. Sarit, Indicators of efficient urban water management, Int. J. Global Environ., 15 (2016) 121–135.
  6. A. Lopez, A. Pollice, G. Laera, A. Lonigro, P. Rubino, Membrane filtration of municipal wastewater effluents for implementing agricultural reuse in southern Italy, Water Sci. Technol., 62 (2010) 1121–1128.
  7. USEPA, Guidelines for Water Reuse, EPA/625/R-04/108, EPA/600/R-12/618, 2012.
  8. Y. Inbar, New Standards for Treated Wastewater Reuse in Israel, Wastewater Reuse-Risk Assessment, Decision-Making and Environmental Security, 2007, pp. 291–296.
  9. C.G. Dosoretz, Removal of Contaminants of Emerging Concern from Wastewater: Where Safe Water Reclamation and Sustainable Effluents Discharge Meet, P. Maurice, Ed., Encyclopedia of Water: Science, Technology, and Society, John Wiley & Sons, Inc. Publication, Hoboken, NJ, 2020, pp. 2145–2158.
  10. C. Jarusutthirak, G. Amy, Membrane filtration of wastewater effluents for reuse: effluent organic matter rejection and fouling, Water Sci. Technol., 43 (2001) 225–232.
  11. Y. Wang, T. Han, Z. Xu, G. Bao, T. Zhu, Optimization of phosphorus removal from secondary effluent using simplex method in Tianjin, China, J. Hazard. Mater., 121 (2005) 183–186.
  12. H.K. Shon, S. Vigneswaran, I.S. Kim, J. Cho, H.H. Ngo, The effect of pretreatment to ultrafiltration of biologically treated sewage effluent: a detailed effluent organic matter (EfOM) characterization, Water Res., 38 (2004) 1933–1939.
  13. V. Matamoros, V. Salvadó, Evaluation of a coagulation/ flocculation-lamellar clarifier and filtration-UV-chlorination reactor for removing emerging contaminants at full-scale wastewater treatment plants in Spain, J. Environ. Manage., 117 (2013) 96–102.
  14. Y. Luo, W. Guo, H.H. Ngo, L.D. Nghiem, F.I. Hai, J. Zhang, S. Liang, X.C. Wang, A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ., 473– 474 (2014) 619–641.
  15. B. Petrie, R. Barden, B. Kasprzyk-Hordern, A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring, Water Res., 72 (2014) 3–27.
  16. S. Panthi, A.R. Sapkota, G. Raspanti, S.M. Allard, A. Bui, H.A. Craddock, R. Murray, L. Zhu, C. East, E. Handy, M.T. Callahan, J. Haymaker, P. Kulkarni, B. Anderson, S. Craighead, S. Gartley, A. Vanore, W.Q. Betancourt, R. Duncan, D. Foust, M. Sharma, S.A. Micallef, C. Gerba, S. Parveen, F. Hashem, E. May, K. Kniel, M. Pop, S. Ravishankar, A. Sapkota, Pharmaceuticals, herbicides, and disinfectants in agricultural water sources, Environ. Res., 174 (2019) 1–8.
  17. N. Montemurro, C. Postigo, S. Chirón, D. Barcelò, S. Pérez, Analysis and fate of 14 relevant wastewater-derived organic pollutants in long-term exposed soil, Anal. Bioanal. Chem., 411 (2019) 2687–2696.
  18. A.C. Neves, M.P.G. Mol, Theoretical environmental risk assessment of ten used pharmaceuticals in Belo Horizonte, Brazil, Environ. Monit. Assess., 191 (2019) 275.
  19. Q. Sui, X. Cao, S. Lu, W. Zhao, Z. Qiu, G. Yu, Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: a review, Emerg. Contam., 1 (2015) 14–24.
  20. M. Patel, R. Kumar, K. Kishor, T. Mlsna, C.U. Pittman, D. Mohan, Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods, Chem. Rev., 119 (2019) 3510–3673.
  21. F.U.R. Harth, C. Arras, D.J. Brettschneider, A. Misovic, J. Oehlmann, U. Schulte-Oehlmann, M. Oetken, Small but with big impact? Ecotoxicological effects of a municipal wastewater effluent on a small creek, J. Environ. Sci. Health., Part A, 53 (2019) 1–12.
  22. W. Zhang, M. Zhang, K. Lin, W. Sun, B. Xiong, M. Guo, X. Cui, R. Fu, Eco-toxicological effect of Carbamazepine on Scenedesmus obliquus and Chlorella pyrenoidosa, Environ. Toxicol. Pharmacol., 33 (2012) 344–352.
  23. M. Crane, C. Watts, T. Boucard, Chronic aquatic environmental risks from exposure to human pharmaceuticals, Sci. Total Environ., 367 (2006) 23–41.
  24. G.M. Bruce, R.C. Pleus, S.A. Snyder, Toxicological relevance of pharmaceuticals in drinking water, Environ. Sci. Technol., 44 (2010) 5619–5626.
  25. M.O. Barbosa, N.F.F. Moreira, A.R. Ribeiro, M.F.R. Pereira, A.M.T. Silva, Occurrence and removal of organic micropollutants: an overview of the watch list of EU Decision 2015/495, Water Res., 94 (2016) 257–279.
  26. M. Bourgin, B. Beck, M. Boehler, E. Borowska, J. Fleiner, E. Salhi, R. Teichler, U. von Gunten, H. Siegrist, C.S. McArdell, Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: abatement of micropollutants, formation of transformation products and oxidation by-products, Water Res., 129 (2018) 486–498.
  27. A. Bellver-Domingo, R. Fuentes, F. Hernández-Sancho, Shadow prices of emerging pollutants in wastewater treatment plants: quantification of environmental externalities, J. Environ. Manage., 203 (2017) 439–447.
  28. S. Mura, L. Malfatti, G. Greppi, P. Innocenzi, Ferrates for water remediation, Rev. Environ. Sci. Biotechnol., 16 (2016) 1–21.
  29. G. Centi, S. Perathoner, Advanced Oxidation Processes in Water Treatment, D. Duprez, F. Cavani, Eds., Handbook of Advanced Methods and Progress in Oxidation Catalysis, Imperial College Press, London, 2014, pp. 251–320.
  30. R. Andreozzi, Advanced oxidation processes (AOP) for water purification and recovery, Catal. Today, 53 (1999) 51–59.
  31. A.S. Adeleye, J.R. Conway, K. Garner, Y. Huang, Y. Su, A.A. Keller, Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability, Chem. Eng. J., 286 (2016) 640–662.
  32. M. Klavarioti, D. Mantzavinos, D. Kassinos, Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes, Environ. Int., 35 (2009) 402–417.
  33. C.R. Bartels, M. Wilf, K. Andes, J. Iong, Design considerations for wastewater treatment by reverse osmosis, Water Sci. Technol., 51 (2005) 473–482.
  34. S.O. Ganiyu, E.D. Van Hullebusch, M. Cretin, G. Esposito, M.A. Oturan, Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: a critical review, Sep. Purif. Technol., 156 (2015) 891–914.
  35. Y. Han, M. Ma, N. Li, R. Hou, C. Huang, Y. Oda, Z. Wang, Chlorination, chloramination and ozonation of carbamazepine enhance cytotoxicity and genotoxicity: multi-endpoint evaluation and identification of its genotoxic transformation products, J. Hazard. Mater., 342 (2018) 679–688.
  36. S.P. Azerrad, S. Gur-Reznik, L. Heller-Grossman, C.G. Dosoretz, Advanced oxidation of iodinated X-ray contrast media in reverse osmosis brines: the influence of quenching, Water Res., 62 (2014) 107–116.
  37. D. Xu, S. Wang, X. Tang, Y. Gong, Y. Guo, Y. Wang, J. Zhang, Design of the first pilot scale plant of China for supercritical water oxidation of sewage sludge, Chem. Eng. Res. Des., 90 (2012) 288–297.
  38. S.O. Odu, A.G.J. Van Der Ham, S. Metz, S.R.A. Kersten, Design of a process for supercritical water desalination with zero liquid discharge, Ind. Eng. Chem. Res., 54 (2015) 5527–5535.
  39. Y. Guo, P.S. Qi, Y.Z. Liu, A review on advanced treatment of pharmaceutical wastewater, IOP Conf. Ser.: Earth Environ. Sci., 63 (2017) 6.
  40. S. Zhang, Z. Zhang, R. Zhao, J. Gu, J. Liu, B. Örmeci, J. Zhang, A review of challenges and recent progress in supercritical water oxidation of wastewater, Chem. Eng. Commun., 204 (2017) 265–282.
  41. J.W. Tester, H.R. Holgate, F.J. Armellini, P.A. Webley, W.R. Killilea, G.T. Hong, H.E. Barner, Supercritical water oxidation technology process development and fundamental research, in: Emerg. Technol. Hazard. Waste Manag. III, American Chemical Society, Washington, D.C., 1993, pp. 35–76.
  42. K.I. Ekpeghere, W.J. Sim, H.J. Lee, J.E. Oh, Occurrence and distribution of carbamazepine, nicotine, estrogenic compounds, and their transformation products in wastewater from various treatment plants and the aquatic environment, Sci. Total Environ., 640–641 (2018) 1015–1023.
  43. P.A. Datar, Quantitative bioanalytical and analytical method development of dibenzazepine derivative, carbamazepine: a review, J. Pharm. Anal., 5 (2015) 213–222.
  44. A. Shareef, M.J. Angove, J.D. Wells, B.B. Johnson, Aqueous solubilities of estrone, 17β-estradiol, 17α-ethynylestradiol, and bisphenol A, J. Chem. Eng. Data, 51 (2006) 879–881.
  45. S. Wang, Y. Hu, J. Wang, Strategy of combining radiation with ferrate oxidation for enhancing the degradation and mineralization of carbamazepine, Sci. Total Environ., 687 (2019) 1028–1033.
  46. A. Monteoliva-García, J. Martín-Pascual, M.M. Muñío, J.M. Poyatos, Removal of carbamazepine, ciprofloxacin and ibuprofen in real urban wastewater by using light-driven advanced oxidation processes, Int. J. Environ. Sci. Technol., 16 (2019) 6005–6018.
  47. J.D. García-Espinoza, P. Mijaylova-Nacheva, M. Avilés-Flores, Electrochemical carbamazepine degradation: effect of the generated active chlorine, transformation pathways and toxicity, Chemosphere, 192 (2018) 142–151.
  48. P. Thanekar, M. Panda, P.R. Gogate, Degradation of carbamazepine using hydrodynamic cavitation combined with advanced oxidation processes, Ultrason. Sonochem., 40 (2018) 567–576.
  49. P. Zhang, X. Tan, S. Liu, Y. Liu, G. Zeng, S. Ye, Z. Yin, X. Hu, N. Liu, Catalytic degradation of estrogen by persulfate activated with iron-doped graphitic biochar: process variables effects and matrix effects, Chem. Eng. J., 378 (2019) 122141.
  50. Y. Wang, Q. Sun, Y. Li, H. Wang, K. Wu, C.P. Yu, Biotransformation of estrone, 17β-estradiol and 17α-ethynylestradiol by four species of microalgae, Ecotoxicol. Environ. Saf., 180 (2019) 723–732.
  51. C. Qin, C. Shang, K. Xia, Removal of 17Β-estradiol from secondary wastewater treatment plant effluent using Fe3+-saturated montmorillonite, Chemosphere, 224 (2019) 480–486.
  52. X.Y. Ma, Y. Wang, K. Dong, X.C. Wang, K. Zheng, L. Hao, H.H. Ngo, The treatability of trace organic pollutants in WWTP effluent and associated biotoxicity reduction by advanced treatment processes for effluent quality improvement, Water Res., 159 (2019) 423–433.
  53. C.P. Silva, M. Otero, V. Esteves, Processes for the elimination of estrogenic steroid hormones from water: a review, Environ. Pollut., 165 (2012) 38–58.
  54. S. Falamarzian, O. Tavakoli, R. Zarghami, M.A. Faramarzi, Catalytic hydrothermal treatment of pharmaceutical wastewater using sub- and supercritical water reactions, J. Supercrit. Fluids, 95 (2014) 265–272.
  55. S.V.P. Mylapilli, S.N. Reddy, Sub and supercritical water oxidation of pharmaceutical wastewater, J. Environ. Chem. Eng., 7 (2019) 103165.
  56. G. Daniele, M. Fieu, S. Joachim, A. Bado-Nilles, R. Beaudouin, P. Baudoin, A. James-Casas, S. Andres, M. Bonnard, I. Bonnard, A. Geffard, E. Vulliet, Determination of carbamazepine and 12 degradation products in various compartments of an outdoor aquatic mesocosm by reliable analytical methods based on liquid chromatography-tandem mass spectrometry, Environ. Sci. Pollut. Res., 24 (2017) 16893–16904.
  57. L. Havlíková, L. Nováková, L. Matysová, J. Šícha, P. Solich, Determination of estradiol and its degradation products by liquid chromatography, J. Chromatogr. A., 1119 (2006) 216–223.
  58. Y. Liu, H. Sun, L. Zhang, L. Feng, Photodegradation behaviors of 17β-estradiol in different water matrixes, Process Saf. Environ. Prot., 112 (2017) 335–341.
  59. M. Ziegmann, F.H. Frimmel, Photocatalytic degradation of clofibric acid, carbamazepine and iomeprol using conglomerated TiO2 and activated carbon in aqueous suspension, Water Sci. Technol., 61 (2010) 273–281.
  60. E.J. van den Brandhof, M. Montforts, Fish embryo toxicity of carbamazepine, diclofenac and metoprolol, Ecotoxicol. Environ. Saf., 73 (2010) 1862–1866.
  61. B. Ferrari, N. Paxéus, R. Lo Giudice, A. Pollio, J. Garric, Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac, Ecotoxicol. Environ. Saf., 55 (2003) 359–370.
  62. A. Beig, J.M. Miller, A. Dahan, Accounting for the solubilitypermeability interplay in oral formulation development for poor water solubility drugs: the effect of PEG-400 on carbamazepine absorption, Eur. J. Pharm. Biopharm., 81 (2012) 386–391.
  63. L. Qian, S. Wang, M. Ren, S. Wang, Co-oxidation effects and mechanisms between sludge and alcohols (methanol, ethanol and isopropanol) in supercritical water, Chem. Eng. J., 366 (2019) 223–234.
  64. S. Gur-Reznik, C.G. Dosoretz, Viability and Reliability of Dense Membranes in Removing Trace Organic Contaminants for Wastewater Reclamation and Purification: Pros and Cons, Mechanisms, and Trends, in: Environ. Indic., Springer, Dordrecht, 2015, pp. 805–823.
  65. S.P. Azerrad, M. Isaacs, C.G. Dosoretz, Integrated treatment of reverse osmosis brines coupling electrocoagulation with advanced oxidation processes, Chem. Eng. J., 356 (2019) 771–780.
  66. B.D. Phenix, J.L. DiNaro, J.W. Tester, J.B. Howard, K.A. Smith, The effects of mixing and oxidant choice on laboratory-scale measurements of supercritical water oxidation kinetics, Ind. Eng. Chem. Res., 41 (2002) 624–631.
  67. B. Kayan, B. Gözmen, Degradation of Acid Red 274 using H2O2 in subcritical water: application of response surface methodology, J. Hazard. Mater., 201–202 (2012) 100–106.
  68. E. Yabalak, H.A. Döndaş, A.M. Gizir, Subcritical water oxidation of 6-aminopenicillanic acid and cloxacillin using H2O2, K2S2O8, and O2, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 52 (2017) 210–220.
  69. P.E. Savage, Organic chemical reactions in supercritical water, Chem. Rev., 99 (1999) 603–622.
  70. N. Akiya, P.E. Savage, Roles of water for chemical reactions in high-temperature water, Chem. Rev., 102 (2002) 2725–2750.
  71. T. Ma, T. Hu, D. Jiang, J. Zhang, W. Li, Y. Han, B. Örmeci, Treatment of penicillin with supercritical water oxidation: experimental study of combined ReaxFF molecular dynamics, Korean J. Chem. Eng., 35 (2018) 1–9.
  72. B. Al-Duri, F. Alsoqyiani, I. Kings, Supercritical water oxidation (SCWO) for the removal of N-containing heterocyclic hydrocarbon wastes. Part I: process enhancement by addition of isopropyl alcohol, J. Supercrit. Fluids, 116 (2016) 155–163.
  73. J. Zhang, P. Li, J. Lu, F. Xin, X. Zheng, S. Chen, Supercritical water oxidation of ammonia with methanol as the auxiliary fuel: comparing with isopropanol, Chem. Eng. Res. Des., 147 (2019) 160–170.
  74. B. Al-Duri, F. Alsoqyani, I. Kings, Supercritical water oxidation for the destruction of hazardous waste: better than incineration, Philos. Trans. R. Soc. London, Ser. A, 373 (2015) 20150013.
  75. M.A.H. Franson, Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association, Washington, D.C., 1998.
  76. W.C. Schumb, C.N. Satterfield, R.L. Wentworth, Hydrogen Peroxide, A.C.S.M, Reinhold Publishing Corporation, New York, 1955.
  77. D. Xu, S. Wang, J. Zhang, X. Tang, Y. Guo, C. Huang, Supercritical water oxidation of a pesticide wastewater, Chem. Eng. Res. Des., 94 (2015) 396–406.
  78. Y. Marcus, Supercritical Water, John Wiley & Sons, Inc. Publication, Hoboken, NJ, 2012.
  79. S. Wang, J. Wang, Carbamazepine degradation by gamma irradiation coupled to biological treatment, J. Hazard. Mater., 321 (2017) 639–646.
  80. N. Crain, S. Tebbal, L.X. Li, E.F. Gloyna, Kinetics and reaction pathways of pyridine oxidation in Supercritical Water, Ind. Eng. Chem. Res., 32 (1993) 2259–2268.
  81. L.D.S. Pinto, L.M. Freitas dos Santos, B. Al-Duri, R.C.D. Santos, Supercritical water oxidation of quinoline in a continuous plug flow reactor - Part 1: effect of key operating parameters, J. Chem. Technol. Biotechnol., 81 (2006) 912–918.
  82. S.N.V.K. Aki, M.A. Abraham, Catalytic supercritical water oxidation of pyridine: kinetics and mass transfer, Chem. Eng. Sci., 54 (1999) 3533–3542.
  83. S. Wiegman, J.A.G. Termeer, T. Verheul, M.H.S. Kraak, P. de Voogt, R.W.P.M. Laane, W. Admiraal, UV absorbance dependent toxicity of acridine to the marine diatom Phaeodactylum tricornutum, Environ. Sci. Technol., 36 (2002) 908–913.
  84. C. Zhang, J. Li, Z. Zhang, N. Dong, J. Wang, Y. Liu, L. Ling, P. Han, Acceleration of oxidation process of iron in supercritical water containing dissolved oxygen by the formation of H2O2, AIP Adv., 8 (2018), doi: 10.1063/1.5032264.
  85. H. Hamid, C. Eskicioglu, Fate of estrogenic hormones in wastewater and sludge treatment: a review of properties and analytical detection techniques in sludge matrix, Water Res., 46 (2012) 5813–5833.
  86. O.T. Komesli, M. Muz, M.S. Ak, S. Bakirdere, C.F. Gokcay, Occurrence, fate and removal of endocrine disrupting compounds (EDCs) in Turkish wastewater treatment plants, Chem. Eng. J., 277 (2015) 202–208.
  87. V. Vadillo, M.B. García-Jarana, J. Sánchez-Oneto, J.R. Portela, E.J. Martínez de la Ossa, Supercritical water oxidation of flammable industrial wastewaters: economic perspectives of an industrial plant, J. Chem. Technol. Biotechnol., 86 (2011) 1049–1057.
  88. V. Vadillo, J. Sánchez-Oneto, J.R. Portela, E.J. Martínez de la Ossa, Supercritical Water Oxidation for Wastewater Destruction with Energy Recovery, V. Anikeev, M. Fan, Eds., Supercritical Fluid Technology for Energy and Environmental Applications, Elsevier, Boston, 2014, pp. 181–190.
  89. F. Zhang, B. Shen, C. Su, C. X u, J. Ma, Y. Xiong, C. Ma, Energy consumption and exergy analyses of a supercritical water oxidation system with a transpiring wall reactor, Energy Convers. Manage., 145 (2017) 82–92.
  90. F. Zhang, J. Chen, C. Su, C. Ma, Energy Consumption and economic analyses of a supercritical water oxidation system with oxygen recovery, Processes, 6 (2018) 224.
  91. J. Yang, S. Wang, Y. Li, Y. Zhang, D. Xu, Novel design concept for a commercial-scale plant for supercritical water oxidation of industrial and sewage sludge, J. Environ. Manage., 233 (2019) 131–140.