References
- M. Grassi, G. Kaykioglu, V. Belgiorno, Removal of Emerging
Contaminants from Water and Wastewater by Adsorption
Process, G. Lofrano, Ed., Emerging Compounds Removal from
Wastewater, Springer International Publishing, Salerno, 2012,
pp. 15–38.
- I. Michael-Kordatou, C. Michael, X. Duan, X. He, D.D. Dionysiou,
M.A. Mills, D. Fatta-Kassinos, Dissolved effluent
organic matter: characteristics and potential implications in
wastewater treatment and reuse applications, Water Res.,
77 (2015) 213–248.
- L. Groisman, E. Rorman, Identification and Characterization of
Toxic Organic Contaminants in Effluents Used for Irrigation,
Israel ministry of Health Report No. 7-2-3, 2009. Available at:
http://www.sviva.gov.il/InfoServices/ReservoirInfo/DocLib4/R0201-R0300/R0287AbstractEng.pdf
- N. Haruvy, Agricultural reuse of wastewater: nation-wide
cost-benefit analysis, Agric. Ecosyst. Environ., 66 (1997)
113–119.
- N. Haruvy, S. Sarit, Indicators of efficient urban water management,
Int. J. Global Environ., 15 (2016) 121–135.
- A. Lopez, A. Pollice, G. Laera, A. Lonigro, P. Rubino, Membrane
filtration of municipal wastewater effluents for implementing
agricultural reuse in southern Italy, Water Sci. Technol., 62 (2010)
1121–1128.
- USEPA, Guidelines for Water Reuse, EPA/625/R-04/108, EPA/600/R-12/618, 2012.
- Y. Inbar, New Standards for Treated Wastewater Reuse
in Israel, Wastewater Reuse-Risk Assessment, Decision-Making and Environmental Security, 2007, pp. 291–296.
- C.G. Dosoretz, Removal of Contaminants of Emerging
Concern from Wastewater: Where Safe Water Reclamation
and Sustainable Effluents Discharge Meet, P. Maurice, Ed.,
Encyclopedia of Water: Science, Technology, and Society,
John Wiley & Sons, Inc. Publication, Hoboken, NJ, 2020, pp.
2145–2158.
- C. Jarusutthirak, G. Amy, Membrane filtration of wastewater
effluents for reuse: effluent organic matter rejection and fouling,
Water Sci. Technol., 43 (2001) 225–232.
- Y. Wang, T. Han, Z. Xu, G. Bao, T. Zhu, Optimization of phosphorus
removal from secondary effluent using simplex
method in Tianjin, China, J. Hazard. Mater., 121 (2005) 183–186.
- H.K. Shon, S. Vigneswaran, I.S. Kim, J. Cho, H.H. Ngo,
The effect of pretreatment to ultrafiltration of biologically
treated sewage effluent: a detailed effluent organic matter
(EfOM) characterization, Water Res., 38 (2004) 1933–1939.
- V. Matamoros, V. Salvadó, Evaluation of a coagulation/
flocculation-lamellar clarifier and filtration-UV-chlorination
reactor for removing emerging contaminants at full-scale
wastewater treatment plants in Spain, J. Environ. Manage.,
117 (2013) 96–102.
- Y. Luo, W. Guo, H.H. Ngo, L.D. Nghiem, F.I. Hai, J. Zhang,
S. Liang, X.C. Wang, A review on the occurrence of micropollutants
in the aquatic environment and their fate and
removal during wastewater treatment, Sci. Total Environ., 473–
474 (2014) 619–641.
- B. Petrie, R. Barden, B. Kasprzyk-Hordern, A review on
emerging contaminants in wastewaters and the environment:
current knowledge, understudied areas and recommendations
for future monitoring, Water Res., 72 (2014) 3–27.
- S. Panthi, A.R. Sapkota, G. Raspanti, S.M. Allard, A. Bui,
H.A. Craddock, R. Murray, L. Zhu, C. East, E. Handy,
M.T. Callahan, J. Haymaker, P. Kulkarni, B. Anderson, S. Craighead,
S. Gartley, A. Vanore, W.Q. Betancourt, R. Duncan,
D. Foust, M. Sharma, S.A. Micallef, C. Gerba, S. Parveen,
F. Hashem, E. May, K. Kniel, M. Pop, S. Ravishankar, A. Sapkota,
Pharmaceuticals, herbicides, and disinfectants in agricultural
water sources, Environ. Res., 174 (2019) 1–8.
- N. Montemurro, C. Postigo, S. Chirón, D. Barcelò, S. Pérez,
Analysis and fate of 14 relevant wastewater-derived organic
pollutants in long-term exposed soil, Anal. Bioanal. Chem.,
411 (2019) 2687–2696.
- A.C. Neves, M.P.G. Mol, Theoretical environmental risk assessment
of ten used pharmaceuticals in Belo Horizonte, Brazil,
Environ. Monit. Assess., 191 (2019) 275.
- Q. Sui, X. Cao, S. Lu, W. Zhao, Z. Qiu, G. Yu, Occurrence,
sources and fate of pharmaceuticals and personal care products
in the groundwater: a review, Emerg. Contam., 1 (2015) 14–24.
- M. Patel, R. Kumar, K. Kishor, T. Mlsna, C.U. Pittman, D.
Mohan, Pharmaceuticals of emerging concern in aquatic
systems: chemistry, occurrence, effects, and removal methods,
Chem. Rev., 119 (2019) 3510–3673.
- F.U.R. Harth, C. Arras, D.J. Brettschneider, A. Misovic,
J. Oehlmann, U. Schulte-Oehlmann, M. Oetken, Small but with
big impact? Ecotoxicological effects of a municipal wastewater
effluent on a small creek, J. Environ. Sci. Health., Part A,
53 (2019) 1–12.
- W. Zhang, M. Zhang, K. Lin, W. Sun, B. Xiong, M. Guo, X. Cui,
R. Fu, Eco-toxicological effect of Carbamazepine on Scenedesmus
obliquus and Chlorella pyrenoidosa, Environ. Toxicol. Pharmacol.,
33 (2012) 344–352.
- M. Crane, C. Watts, T. Boucard, Chronic aquatic environmental
risks from exposure to human pharmaceuticals, Sci. Total
Environ., 367 (2006) 23–41.
- G.M. Bruce, R.C. Pleus, S.A. Snyder, Toxicological relevance
of pharmaceuticals in drinking water, Environ. Sci. Technol.,
44 (2010) 5619–5626.
- M.O. Barbosa, N.F.F. Moreira, A.R. Ribeiro, M.F.R. Pereira,
A.M.T. Silva, Occurrence and removal of organic micropollutants:
an overview of the watch list of EU Decision
2015/495, Water Res., 94 (2016) 257–279.
- M. Bourgin, B. Beck, M. Boehler, E. Borowska, J. Fleiner,
E. Salhi, R. Teichler, U. von Gunten, H. Siegrist, C.S. McArdell,
Evaluation of a full-scale wastewater treatment plant
upgraded with ozonation and biological post-treatments:
abatement of micropollutants, formation of transformation
products and oxidation by-products, Water Res., 129 (2018)
486–498.
- A. Bellver-Domingo, R. Fuentes, F. Hernández-Sancho, Shadow
prices of emerging pollutants in wastewater treatment plants:
quantification of environmental externalities, J. Environ.
Manage., 203 (2017) 439–447.
- S. Mura, L. Malfatti, G. Greppi, P. Innocenzi, Ferrates for water
remediation, Rev. Environ. Sci. Biotechnol., 16 (2016) 1–21.
- G. Centi, S. Perathoner, Advanced Oxidation Processes in Water
Treatment, D. Duprez, F. Cavani, Eds., Handbook of Advanced
Methods and Progress in Oxidation Catalysis, Imperial College
Press, London, 2014, pp. 251–320.
- R. Andreozzi, Advanced oxidation processes (AOP) for water
purification and recovery, Catal. Today, 53 (1999) 51–59.
- A.S. Adeleye, J.R. Conway, K. Garner, Y. Huang, Y. Su,
A.A. Keller, Engineered nanomaterials for water treatment and
remediation: costs, benefits, and applicability, Chem. Eng. J.,
286 (2016) 640–662.
- M. Klavarioti, D. Mantzavinos, D. Kassinos, Removal of residual
pharmaceuticals from aqueous systems by advanced oxidation
processes, Environ. Int., 35 (2009) 402–417.
- C.R. Bartels, M. Wilf, K. Andes, J. Iong, Design considerations
for wastewater treatment by reverse osmosis, Water Sci.
Technol., 51 (2005) 473–482.
- S.O. Ganiyu, E.D. Van Hullebusch, M. Cretin, G. Esposito,
M.A. Oturan, Coupling of membrane filtration and advanced
oxidation processes for removal of pharmaceutical residues:
a critical review, Sep. Purif. Technol., 156 (2015) 891–914.
- Y. Han, M. Ma, N. Li, R. Hou, C. Huang, Y. Oda, Z. Wang,
Chlorination, chloramination and ozonation of carbamazepine
enhance cytotoxicity and genotoxicity: multi-endpoint evaluation
and identification of its genotoxic transformation products,
J. Hazard. Mater., 342 (2018) 679–688.
- S.P. Azerrad, S. Gur-Reznik, L. Heller-Grossman, C.G. Dosoretz,
Advanced oxidation of iodinated X-ray contrast media in
reverse osmosis brines: the influence of quenching, Water Res.,
62 (2014) 107–116.
- D. Xu, S. Wang, X. Tang, Y. Gong, Y. Guo, Y. Wang, J. Zhang,
Design of the first pilot scale plant of China for supercritical
water oxidation of sewage sludge, Chem. Eng. Res. Des.,
90 (2012) 288–297.
- S.O. Odu, A.G.J. Van Der Ham, S. Metz, S.R.A. Kersten, Design
of a process for supercritical water desalination with zero liquid
discharge, Ind. Eng. Chem. Res., 54 (2015) 5527–5535.
- Y. Guo, P.S. Qi, Y.Z. Liu, A review on advanced treatment of
pharmaceutical wastewater, IOP Conf. Ser.: Earth Environ. Sci.,
63 (2017) 6.
- S. Zhang, Z. Zhang, R. Zhao, J. Gu, J. Liu, B. Örmeci, J. Zhang,
A review of challenges and recent progress in supercritical
water oxidation of wastewater, Chem. Eng. Commun., 204 (2017)
265–282.
- J.W. Tester, H.R. Holgate, F.J. Armellini, P.A. Webley, W.R. Killilea,
G.T. Hong, H.E. Barner, Supercritical water oxidation
technology process development and fundamental research, in:
Emerg. Technol. Hazard. Waste Manag. III, American Chemical
Society, Washington, D.C., 1993, pp. 35–76.
- K.I. Ekpeghere, W.J. Sim, H.J. Lee, J.E. Oh, Occurrence and
distribution of carbamazepine, nicotine, estrogenic compounds,
and their transformation products in wastewater from various
treatment plants and the aquatic environment, Sci. Total
Environ., 640–641 (2018) 1015–1023.
- P.A. Datar, Quantitative bioanalytical and analytical method
development of dibenzazepine derivative, carbamazepine:
a review, J. Pharm. Anal., 5 (2015) 213–222.
- A. Shareef, M.J. Angove, J.D. Wells, B.B. Johnson, Aqueous
solubilities of estrone, 17β-estradiol, 17α-ethynylestradiol, and
bisphenol A, J. Chem. Eng. Data, 51 (2006) 879–881.
- S. Wang, Y. Hu, J. Wang, Strategy of combining radiation
with ferrate oxidation for enhancing the degradation and
mineralization of carbamazepine, Sci. Total Environ., 687 (2019)
1028–1033.
- A. Monteoliva-García, J. Martín-Pascual, M.M. Muñío,
J.M. Poyatos, Removal of carbamazepine, ciprofloxacin and
ibuprofen in real urban wastewater by using light-driven
advanced oxidation processes, Int. J. Environ. Sci. Technol.,
16 (2019) 6005–6018.
- J.D. García-Espinoza, P. Mijaylova-Nacheva, M. Avilés-Flores,
Electrochemical carbamazepine degradation: effect of the
generated active chlorine, transformation pathways and
toxicity, Chemosphere, 192 (2018) 142–151.
- P. Thanekar, M. Panda, P.R. Gogate, Degradation of carbamazepine
using hydrodynamic cavitation combined with advanced
oxidation processes, Ultrason. Sonochem., 40 (2018) 567–576.
- P. Zhang, X. Tan, S. Liu, Y. Liu, G. Zeng, S. Ye, Z. Yin, X. Hu,
N. Liu, Catalytic degradation of estrogen by persulfate activated
with iron-doped graphitic biochar: process variables effects
and matrix effects, Chem. Eng. J., 378 (2019) 122141.
- Y. Wang, Q. Sun, Y. Li, H. Wang, K. Wu, C.P. Yu, Biotransformation
of estrone, 17β-estradiol and 17α-ethynylestradiol by four
species of microalgae, Ecotoxicol. Environ. Saf., 180 (2019)
723–732.
- C. Qin, C. Shang, K. Xia, Removal of 17Β-estradiol from
secondary wastewater treatment plant effluent using Fe3+-saturated montmorillonite, Chemosphere, 224 (2019) 480–486.
- X.Y. Ma, Y. Wang, K. Dong, X.C. Wang, K. Zheng, L. Hao, H.H.
Ngo, The treatability of trace organic pollutants in WWTP
effluent and associated biotoxicity reduction by advanced
treatment processes for effluent quality improvement, Water
Res., 159 (2019) 423–433.
- C.P. Silva, M. Otero, V. Esteves, Processes for the elimination
of estrogenic steroid hormones from water: a review, Environ.
Pollut., 165 (2012) 38–58.
- S. Falamarzian, O. Tavakoli, R. Zarghami, M.A. Faramarzi,
Catalytic hydrothermal treatment of pharmaceutical wastewater
using sub- and supercritical water reactions, J. Supercrit. Fluids,
95 (2014) 265–272.
- S.V.P. Mylapilli, S.N. Reddy, Sub and supercritical water
oxidation of pharmaceutical wastewater, J. Environ. Chem.
Eng., 7 (2019) 103165.
- G. Daniele, M. Fieu, S. Joachim, A. Bado-Nilles, R. Beaudouin,
P. Baudoin, A. James-Casas, S. Andres, M. Bonnard, I. Bonnard,
A. Geffard, E. Vulliet, Determination of carbamazepine and 12
degradation products in various compartments of an outdoor
aquatic mesocosm by reliable analytical methods based on
liquid chromatography-tandem mass spectrometry, Environ.
Sci. Pollut. Res., 24 (2017) 16893–16904.
- L. Havlíková, L. Nováková, L. Matysová, J. Šícha, P. Solich,
Determination of estradiol and its degradation products by
liquid chromatography, J. Chromatogr. A., 1119 (2006) 216–223.
- Y. Liu, H. Sun, L. Zhang, L. Feng, Photodegradation behaviors of
17β-estradiol in different water matrixes, Process Saf. Environ.
Prot., 112 (2017) 335–341.
- M. Ziegmann, F.H. Frimmel, Photocatalytic degradation of
clofibric acid, carbamazepine and iomeprol using conglomerated
TiO2 and activated carbon in aqueous suspension, Water Sci.
Technol., 61 (2010) 273–281.
- E.J. van den Brandhof, M. Montforts, Fish embryo toxicity of
carbamazepine, diclofenac and metoprolol, Ecotoxicol. Environ.
Saf., 73 (2010) 1862–1866.
- B. Ferrari, N. Paxéus, R. Lo Giudice, A. Pollio, J. Garric,
Ecotoxicological impact of pharmaceuticals found in treated
wastewaters: study of carbamazepine, clofibric acid, and diclofenac,
Ecotoxicol. Environ. Saf., 55 (2003) 359–370.
- A. Beig, J.M. Miller, A. Dahan, Accounting for the solubilitypermeability
interplay in oral formulation development for poor
water solubility drugs: the effect of PEG-400 on carbamazepine
absorption, Eur. J. Pharm. Biopharm., 81 (2012) 386–391.
- L. Qian, S. Wang, M. Ren, S. Wang, Co-oxidation effects and
mechanisms between sludge and alcohols (methanol, ethanol
and isopropanol) in supercritical water, Chem. Eng. J., 366
(2019) 223–234.
- S. Gur-Reznik, C.G. Dosoretz, Viability and Reliability of
Dense Membranes in Removing Trace Organic Contaminants
for Wastewater Reclamation and Purification: Pros and
Cons, Mechanisms, and Trends, in: Environ. Indic., Springer,
Dordrecht, 2015, pp. 805–823.
- S.P. Azerrad, M. Isaacs, C.G. Dosoretz, Integrated treatment
of reverse osmosis brines coupling electrocoagulation with
advanced oxidation processes, Chem. Eng. J., 356 (2019) 771–780.
- B.D. Phenix, J.L. DiNaro, J.W. Tester, J.B. Howard, K.A. Smith,
The effects of mixing and oxidant choice on laboratory-scale
measurements of supercritical water oxidation kinetics, Ind.
Eng. Chem. Res., 41 (2002) 624–631.
- B. Kayan, B. Gözmen, Degradation of Acid Red 274 using
H2O2 in subcritical water: application of response surface
methodology, J. Hazard. Mater., 201–202 (2012) 100–106.
- E. Yabalak, H.A. Döndaş, A.M. Gizir, Subcritical water oxidation
of 6-aminopenicillanic acid and cloxacillin using H2O2, K2S2O8,
and O2, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst.
Environ. Eng., 52 (2017) 210–220.
- P.E. Savage, Organic chemical reactions in supercritical water,
Chem. Rev., 99 (1999) 603–622.
- N. Akiya, P.E. Savage, Roles of water for chemical reactions in
high-temperature water, Chem. Rev., 102 (2002) 2725–2750.
- T. Ma, T. Hu, D. Jiang, J. Zhang, W. Li, Y. Han, B. Örmeci,
Treatment of penicillin with supercritical water oxidation:
experimental study of combined ReaxFF molecular dynamics,
Korean J. Chem. Eng., 35 (2018) 1–9.
- B. Al-Duri, F. Alsoqyiani, I. Kings, Supercritical water
oxidation (SCWO) for the removal of N-containing heterocyclic
hydrocarbon wastes. Part I: process enhancement by addition of
isopropyl alcohol, J. Supercrit. Fluids, 116 (2016) 155–163.
- J. Zhang, P. Li, J. Lu, F. Xin, X. Zheng, S. Chen, Supercritical
water oxidation of ammonia with methanol as the auxiliary fuel:
comparing with isopropanol, Chem. Eng. Res. Des., 147 (2019)
160–170.
- B. Al-Duri, F. Alsoqyani, I. Kings, Supercritical water oxidation
for the destruction of hazardous waste: better than incineration,
Philos. Trans. R. Soc. London, Ser. A, 373 (2015) 20150013.
- M.A.H. Franson, Standard Methods for the Examination of
Water and Wastewater, 20th ed., American Public Health
Association, Washington, D.C., 1998.
- W.C. Schumb, C.N. Satterfield, R.L. Wentworth, Hydrogen
Peroxide, A.C.S.M, Reinhold Publishing Corporation, New
York, 1955.
- D. Xu, S. Wang, J. Zhang, X. Tang, Y. Guo, C. Huang, Supercritical
water oxidation of a pesticide wastewater, Chem. Eng.
Res. Des., 94 (2015) 396–406.
- Y. Marcus, Supercritical Water, John Wiley & Sons, Inc.
Publication, Hoboken, NJ, 2012.
- S. Wang, J. Wang, Carbamazepine degradation by gamma
irradiation coupled to biological treatment, J. Hazard. Mater.,
321 (2017) 639–646.
- N. Crain, S. Tebbal, L.X. Li, E.F. Gloyna, Kinetics and reaction
pathways of pyridine oxidation in Supercritical Water, Ind. Eng.
Chem. Res., 32 (1993) 2259–2268.
- L.D.S. Pinto, L.M. Freitas dos Santos, B. Al-Duri, R.C.D. Santos,
Supercritical water oxidation of quinoline in a continuous
plug flow reactor - Part 1: effect of key operating parameters,
J. Chem. Technol. Biotechnol., 81 (2006) 912–918.
- S.N.V.K. Aki, M.A. Abraham, Catalytic supercritical water
oxidation of pyridine: kinetics and mass transfer, Chem. Eng.
Sci., 54 (1999) 3533–3542.
- S. Wiegman, J.A.G. Termeer, T. Verheul, M.H.S. Kraak, P. de
Voogt, R.W.P.M. Laane, W. Admiraal, UV absorbance dependent
toxicity of acridine to the marine diatom Phaeodactylum
tricornutum, Environ. Sci. Technol., 36 (2002) 908–913.
- C. Zhang, J. Li, Z. Zhang, N. Dong, J. Wang, Y. Liu, L. Ling,
P. Han, Acceleration of oxidation process of iron in supercritical
water containing dissolved oxygen by the formation of
H2O2, AIP Adv., 8 (2018), doi: 10.1063/1.5032264.
- H. Hamid, C. Eskicioglu, Fate of estrogenic hormones in
wastewater and sludge treatment: a review of properties and
analytical detection techniques in sludge matrix, Water Res.,
46 (2012) 5813–5833.
- O.T. Komesli, M. Muz, M.S. Ak, S. Bakirdere, C.F. Gokcay,
Occurrence, fate and removal of endocrine disrupting compounds
(EDCs) in Turkish wastewater treatment plants, Chem.
Eng. J., 277 (2015) 202–208.
- V. Vadillo, M.B. García-Jarana, J. Sánchez-Oneto, J.R. Portela,
E.J. Martínez de la Ossa, Supercritical water oxidation of
flammable industrial wastewaters: economic perspectives of
an industrial plant, J. Chem. Technol. Biotechnol., 86 (2011)
1049–1057.
- V. Vadillo, J. Sánchez-Oneto, J.R. Portela, E.J. Martínez de la
Ossa, Supercritical Water Oxidation for Wastewater Destruction
with Energy Recovery, V. Anikeev, M. Fan, Eds., Supercritical
Fluid Technology for Energy and Environmental Applications,
Elsevier, Boston, 2014, pp. 181–190.
- F. Zhang, B. Shen, C. Su, C. X u, J. Ma, Y. Xiong, C. Ma, Energy
consumption and exergy analyses of a supercritical water
oxidation system with a transpiring wall reactor, Energy
Convers. Manage., 145 (2017) 82–92.
- F. Zhang, J. Chen, C. Su, C. Ma, Energy Consumption and
economic analyses of a supercritical water oxidation system
with oxygen recovery, Processes, 6 (2018) 224.
- J. Yang, S. Wang, Y. Li, Y. Zhang, D. Xu, Novel design concept
for a commercial-scale plant for supercritical water oxidation of
industrial and sewage sludge, J. Environ. Manage., 233 (2019)
131–140.