References

  1. S. Kim, E.M.V. Hoek, Interactions controlling biopolymer fouling of reverse osmosis membranes, Desalination, 202 (2007) 333–342.
  2. S. Lee, S. Kim, J. Cho, E.M.V. Hoek, Natural organic matter fouling due to foulant-membrane physicochemical interactions, Desalination, 202 (2007) 377–384.
  3. S. Kim, S. Lee, E. Lee, S. Sarper, C.H. Kim, J. Cho, Enhanced or reduced concentration polarization by membrane fouling in seawater reverse osmosis (SWRO) processes, Desalination, 247 (2009) 162–168.
  4. S. Kim, S. Lee, C.H. Kim, J. Cho, A new membrane performance index using flow-field flow fractionation (fl-FFF), Desalination, 247 (2009) 169–179.
  5. K.B. Park, C. Choi, H.W. Yu, S.R. Chae, I. Kim, Optimization of chemical cleaning for reverse osmosis membranes with organic fouling using statistical design tools, Environ. Eng. Res., 23 (2018) 474–484.
  6. M. Kim, B. Park, Y.J. Lee, J.L. Lim, S. Lee, S. Kim, Corrected normalized permeate flux for a statistics-based fouling detection method in seawater reverse osmosis process, Desal. Wat. Treat., 57 (2016) 24574–24582.
  7. X. Jin, A. Jawor, S. Kim, E.M.V. Hoek, Effects of feed water temperature on separation performance and organic fouling of brackish water RO membranes, Desalination, 239 (2009) 346–359.
  8. ASTM, Standard Practice for Standardizing Reverse Osmosis Performance Data, D 4516-00 ASTM.
  9. M.A. Saad, Early discovery of RO membrane fouling and realtime monitoring of plant performance for optimizing cost of water, Desalination, 165 (2004) 183–191.
  10. M. Safar, M. Jafar, M. Abdel-Jawad, S. Bou-Hamad, Standardization of RO membrane performance, Desalination, 118 (1998) 13–21.
  11. L.N. Sim, T.H. Chong, A.H. Taheri, S.T.V. Sim, L. Lai, W.B. Krantz, A.G. Fane, A review of fouling indices and monitoring techniques for reverse osmosis, Desalination, 434 (2018) 169–188.
  12. J.S. Ho, L.N. Sim, R.D. Webster, B. Viswanath, H.G.L. Coster, A.G. Fane, Monitoring fouling behaviour of reverse osmosis membranes using electrical impedance spectroscopy: a field trial study, Desalination, 407 (2017) 74–84.
  13. J.S. Vrouwenvelder, J.A.M. van Paassen, L.P. Wessels, A.F. van Dam, S.M. Bakker, The membrane fouling simulator: a practical tool for fouling prediction and control, J. Membr. Sci., 281 (2006) 316–324.
  14. J.S. Vrouwenvelder, M.C.M. van Loosdrecht, J.C. Kruithof, Early warning of biofouling in spiral wound nanofiltration and reverse osmosis membranes, Desalination, 265 (2011) 206–212.
  15. G. Mousmoulis, N. Karlsen-Davies, G. Aggidis, I. Anagnostopoulos, D. Papantonis, Experimental analysis of cavitation in a centrifugal pump using acoustic emission, vibration measurements and flow visualization, Eur. J. Mech. B. Fluids, 75 (2019) 300–311.
  16. A.R. Al-Obaidi, Investigation of effect of pump rotational speed on performance and detection of cavitation within a centrifugal pump using vibration analysis, Heliyon, 5 (2019) e019103.
  17. A.K. Panda, J.S. Rapur, R. Tiwari, Prediction of flow blockages and impending cavitation in centrifugal pumps using support vector machine (SVM) algorithms based on vibration measurements, Measurement, 130 (2018) 44–56.
  18. X. Su, W. Li, A. Palazzolo, S. Ahmed, Permeate flux increase by colloidal fouling control in a vibration enhanced reverse osmosis membrane desalination system, Desalination, 453 (2019) 22–36.
  19. M. Kim, M. Kim, B. Park, S. Kim, Changes in characteristics of polyamide reverse osmosis membrane due to chlorine attack, Desal. Wat. Treat, 54 (2015) 923–928.
  20. Sequoia IT S.R.L., Available at: http://www.sequoia.it/wp/en.
  21. The R Project for Statistical Computing, Available at: http://www.r-project.org.