References

  1. L.N. Shi, X. Zhang, Z.L. Chen, Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron, Water Res., 45 (2011) 886–892.
  2. W. Li, Y.K. Tang, Y.T. Zeng, Z.F. Tong, D.W. Liang, W.W. Cui, Adsorption behavior of Cr(VI) ions on tannin-immobilized activated clay, Chem. Eng. J., 193–194 (2012) 88–95.
  3. M. Gheju, I. Balcu, Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations, J. Hazard. Mater.,196 (2011) 131–138.
  4. H. Sarahney, X.H. Mao, A.N. Alshawabkeh, The role of iron anode oxidation on transformation of chromium by electrolysis, Electrochim. Acta, 86 (2012) 96–101.
  5. A. Kumar, C. Guo, G. Sharma, D. Pathania, M. Naushad, S. Kalia, Magnetically recoverable ZrO2/Fe3O4/chitosan nanomaterials for enhanced sunlight driven photoreduction of carcinogenic Cr(VI) and dechlorination and mineralization of 4-chlorophenol from simulated waste water, RSC Adv., 6 (2016) 13251–13263.
  6. Y.T. Lin, C.J. Liang, J.H. Chen, Feasibility study of ultraviolet activated persulfate oxidation of phenol, Chemosphere, 82 (2011) 1168–1172.
  7. R. Vinu, M. Giridhar, Kinetics of simultaneous photocatalytic degradation of phenolic compounds and reduction of metal ions with nano-TiO2, Environ. Sci. Technol., 42 (2008) 913–919.
  8. R.L. Qiu, D.D. Zhang, Z.H. Diao, X.F. Huang, C. He, J.L. Morel, Y. Xiong, Visible light induced photocatalytic reduction of Cr(VI) over polymer-sensitized TiO2 and its synergism with phenol oxidation, Water Res., 46 (2012) 2299–2306.
  9. R.X. Mu, Z.Y. Xu, L.Y. Li, Y. Shao, H.Q. Wan, S.R. Zheng, On the photocatalytic properties of elongated TiO2 nanoparticles for phenol degradation and Cr(VI) reduction, J. Hazard. Mater., 176 (2010) 495–502.
  10. C.X. Zhang, Y.B. Sun, Z.Q. Yu, G.Y. Zhang, J.W. Feng, Simultaneous removal of Cr(VI) and acid orange 7 from water solution by dielectric barrier discharge plasma, Chemosphere, 191 (2018) 527–536.
  11. M. Naushad, Surfactant assisted nano-composite cation exchanger: Development, characterization and applications for the removal of toxic Pb2+ from aqueous medium, Chem. Eng. J., 235 (2014) 100–108.
  12. A.A. Alqadami, Mu. Naushad, Z.A. Alothman, A.A. Ghfar, Novel metal-organic framework (MOF) based composite material for the sequestration of U(VI) and Th(IV) metal ions from aqueous environment, ACS Appl. Mater. Interface, 41 (2017) 36026–36037.
  13. X.C. Yin, W. Liu, J.R. Ni, Removal of coexisting Cr(VI) and 4-chlorophenol through reduction and Fenton reaction in a single system, Chem. Eng. J., 248 (2014) 89–97.
  14. X. He, H.M. Yang, Au nanoparticles assembled on palygorskite: Enhanced catalytic property and Au–Au2O3 coexistence, J. Mol. Catal. A, 379 (2013) 219–224.
  15. L.S. Krishna, K. Soontarapa, A. Yuzir, V.A. Kumar, W.Y.W. Zuhairi, Kaolin-nano scale zero-valent iron composite(K-nZVI): synthesis, characterization and application for heavy metal removal, Desal. Wat. Treat., 100 (2017) 168–177.
  16. H. Xu, W.G. Tian, Y.J. Zhang, J. Tang, Z.T. Zhao, Y. Chen, Reduced graphene oxide/attapulgite-supported nanoscale zero-valent iron removal of Acid Red 18 from aqueous solution, Water Air Soil Pollut., 229 (2018) 1–16.
  17. H.J. Zhu, Y.F. Jia, X. Wu, H. Wang, Removal of arsenic from water by supported nano zero-valent iron on activated carbon, J. Hazard. Mater., 172 (2009) 1591–1596.
  18. B. Mu, A.Q. Wang, Adsorption of dyes onto palygorskite and its composites: A review, J. Environ. Chem. Eng., 4 (2016) 1274–1294.
  19. R.L. Frost, Y.F. Xi, H.P. He, Synthesis, characterization of palygorskite supported zero-valent iron and its application for methylene blue adsorption, J. Colloid Interface Sci., 341 (2010) 153–161.
  20. J.C. Yan, M. Lei, L.H. Zhu, M.N. Anjum, J. Zou, H.Q. Tang, Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate, J. Hazard. Mater., 186 (2011) 1398–1404.
  21. X.L. Zou, T. Zhou, J. Mao, X.H. Wu, Synergistic degradation of antibiotic sulfadiazine in a heterogeneous ultrasound-enhanced Fe0/persulfate Fenton-like system, Chem. Eng. J., 257 (2014) 36–44.
  22. H. Hori, A. Yamamoto, E. Hayakawa, S. Taniyasu, N. Yamashita, S. Kutsuna, H. Kiatagawa, R. Arakawa, Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant, Environ. Sci. Technol., 39 (2005) 2383–2388.
  23. A. Romero, A. Santos, F. Vicente, C. González, Diuron abatement using activated persulphate: effect of pH, Fe(II) and oxidant dosage, Chem. Eng. J., 162 (2010) 257–265.
  24. H.R. Dong, Q. He, G.M. Zeng, L. Tang, L.H. Zhang, Y.K. Xie, Y.L Zeng, F. Zhao, Degradation of trichloroethene by nanoscale zerovalent iron (nZVI) and nZVI activated persulfate in the absence and presence of EDTA, Chem. Eng. J., 316 (2017) 410–418.
  25. H.X. Li, J.Q. Wan, Y.W. Ma, Y. Wang, M.Z. Huang, Influence of particle size of zero-valent iron and dissolved silica on the reactivity of activated persulfate for degradation of acid orange 7, Chem. Eng. J., 237 (2014) 487–496.
  26. S.H. Do, Y.J. Kwon, S.H. Kong, Effect of metal oxides on the reactivity of persulfate/Fe(II) in the remediation of dieselcontaminated soil and sand, J. Hazard. Mater., 182 (2010) 933–936.
  27. J.Y. Zhao, Y.B. Zhang, X. Quan, S. Chen, Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zerovalent iron and peroxydisulfate at ambient temperature, Sep. Purif. Technol., 71 (2010) 302–307.
  28. Z.H. Diao, X.R. Xu, D. Jiang, L.J. Kong, Y.X. Sun, Y.X. Hu, Q.W. Hao, H. Chen, Bentonite-supported nanoscale zero-valent iron/persulfate system for the simultaneous removal of Cr(VI) and phenol from aqueous solutions, Chem. Eng. J., 302 (2016) 213–222.
  29. Y. Yin, M. Zeng, J. Liu, W. Tang, H. Dong, R. Xia, R. Yu, Enhanced high-frequency absorption of anisotropic Fe3O4/graphene nanocomposites, Sci. Rep., 6 (2016) 25075.
  30. Q.L. Ma, W.S. Yu, X.T. Dong, J.X. Wang, G.X. Liu, Janus nanobelts: fabrication, structure and enhanced magneticfluorescent bifunctional performance, Nanoscale, 6 (2014) 2945–2952.
  31. B. Mu, A.Q. Wang, One-pot fabrication of multifunctional superparamagnetic attapulgite/Fe3O4/polyaniline nanocomposites served as an adsorbent and catalyst support, J. Mater. Chem. A, 3 (2015) 281–289.
  32. Y. Chen, Z.H. Lin, R.R. Hao, H. Xu, Chengyu Huang Rapid adsorption and reductive degradation of Naphthol Green B from aqueous solution by polypyrrole/attapulgite composites supported nanoscale zero-valent iron, J. Hazard. Mater., 371 (2019) 8–17.
  33. Mu. Naushad, T. Ahamad, B.M. Al-Maswari, A.A. Alqadami, S.M. Alshehri, Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium, Chem. Eng. J., 330 (2017) 1351–1360.
  34. Z.F. Ren, X. Xu, X. Wang, B.Y. Gao, Q.Y. Yue, W. Song, L. Zhang, H.T. Wang, FTIR, Raman, and XPS analysis during phosphate, nitrate and Cr(VI) removal by amine cross-linking biosorbent, J. Colloid Interface Sci., 468 (2016) 313–323.
  35. S.H. Zhang, M.F. Wu, T.T. Tang, Q.J. Xing, C.Q. Peng, F. Li, H. Liu, X.B. Luo, J.P. Zou, X.B. Min, J.M. Luo, Mechanism investigation of anoxic Cr(VI) removal by nano zero-valent iron based on XPS analysis in time scale, Chem. Eng. J., 335 (2018) 945–953.
  36. X. Liu, X. Xu, J. Sun, A. Alsaedi, T. Hayat, J. Li, X. Wang, Insight into the impact of interaction between attapulgite and graphene oxide on the adsorption of U(VI), Chem. Eng. J., 343 (2018) 217–224.
  37. B. Rhouta, E. Zatile, L. Bouna, O. Lakbita, F. Maury, L. Daoudi, M.C. Lafont, M.B. Amjoud, F. Senocq, A. Jada, Comprehensive physicochemical study of dioctahedral palygorskite-rich clay from Marrakech High Atlas (Morocco), Phys. Chem. Miner., 40 (2013) 411–424.
  38. H. Kusic, I. Peternel, N. Koprivanac, A. Loncaric Bozic, Iron-activated persulfate oxidation of an azo dye in model wastewater: influence of iron activator type on process optimization, J. Environ. Eng., 137 (2011) 454–463.
  39. O.M. Ontanon, C. Landi, A. Carleo, A. Gagliardi, L. Bianchi, P.S. Gonzalez, E. Agostini, L. Bini, What makes A. guillouiae SFC 500-1A able to co-metabolize phenol and Cr(VI)? A proteomic approach, J. Hazard. Mater., 354 (2018) 215–224.
  40. C. Dong, J. Ji, B. Shen, M. Xing, J. Zhang, Enhancement of H2O2 decomposition by the Co-catalytic effect of WS2 on the Fenton reaction for the synchronous reduction of Cr(VI) and remediation of phenol, Environ. Sci. Technol., 52 (2018) 11297–11308.
  41. A. Chen, Z. Bian, J. Xu, X. Xin, H. Wang, Simultaneous removal of Cr(VI) and phenol contaminants using Z-scheme bismuth oxyiodide/reduced graphene oxide/bismuth sulfide system under visible-light irradiation, Chemosphere, 188 (2017) 659–666.
  42. S.M. Alshehri, Mu. Naushad, T. Ahamad, Z.A. ALOthman, A. Aldalbahi, Synthesis, characterization of curcumin based ecofriendly antimicrobial bio-adsorbent for the removal of phenol from aqueous medium, Chem. Eng. J., 254 (2014) 181–189.
  43. Z.A. Al-Othman, R. Ali, M. Naushad, Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: adsorption kinetics, equilibrium and thermodynamic studies, Chem. Eng. J., 184 (2012) 238–247.
  44. A. Zeid, ALOthman, Mu. Naushad, A. Rahmat, Kinetic, equilibrium isotherm and thermodynamic studies of Cr(VI) adsorption onto low-cost adsorbent developed from peanut shell activated with phosphoric acid, Environ. Sci. Pollut. Res., 20 (2013) 3351–3365.
  45. X.Y. Wei, N.Y. Gao, C.J. Li, Y. Deng, S.Q. Zhou, L. Li, Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water, Chem. Eng. J., 285 (2016) 660–670.
  46. C.J Liang, I.L. Lee, I.Y. Hsu, C.P. Liang, Y.L. Lin, Persulfate oxidation of trichloroethylene with and without iron activation in porous media, Chemosphere, 70 (2008) 426–435.
  47. A. Maria Leah Flor. De Castro, Melody Love B. Abad, Divine Angela G. Sumalinog, Ralf Ruffel M. Abarca, Peerasak Paoprasert, Mark Daniel G. de Luna, Adsorption of Methylene Blue dye and Cu(II) ions on EDTA-modifiedbentonite: Isotherm, kinetic and thermodynamic studies, J. Environ. Chem. Eng., 6 (2018) 2803–2811.
  48. Y. Chen, W.C. Long, H. Xu, Efficient removal of Acid Red 18 from aqueous solution by in-situ polymerization of polypyrrolechitosan composites, J. Mol. Liq., 287 (2019) 110888.
  49. M. Zhang, Q. Yao, C. Lu, Z. Li, W. Wang, Layered double hydroxide-carbon dot composite: high-performance adsorbent for removal of anionic organic dye, ACS Appl. Mater. Interface, 6 (2014) 20225–20233.
  50. D. Lv, J.S. Zhou, Z. Cao, J. Xu, Y.L. Liu, Y.Z. Li, K.L. Yang, Z.M. Lou, L.P. Lou, X.H. Xu, Mechanism and influence factors of chromium(VI) removal by sulfidemodified nanoscale zerovalent iron, Chemosphere, 224 (2019) 306–315.
  51. G.P. Anipsitakis, D.D. Dionysiou, Radical generation by the interaction of transition metals with common oxidants, Environ. Sci. Technol., 38 (2004) 3705.
  52. Y.F. Ji, C. Ferronato, A. Salvador, X. Yang, J.M. Chovelon, Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: implications for remediation of groundwater contaminated by antibiotics, Sci. Total Environ., 472 (2014) 800–808.
  53. A.L. Teel, R.J. Watts, Degradation of carbon tetrachloride by modified Fenton’s reagent, J. Hazard. Mater., 94 (2002) 179–189.