References

  1. M. Halim, P. Conte, A. Piccolo, Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances, Chemosphere, 52 (2003) 265–275.
  2. M.I. Ansari, A. Malik, Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater, Bioresour. Technol., 98 (2007) 3149–3153.
  3. L.R. Kalankesh, M.A. Zazouli, Removal of salt from the Caspian Sea using a single-and double-layer membrane microbial desalination cell in continuous-mode operation, Desal. Wat. Treat., 147 (2019) 83–89.
  4. L.R. Kalankesh, S. Rodríguez-Couto, Y.D. Shahamat, H.A. Asgarnia, Removal efficiency of nitrate, phosphate, fecal and total coliforms by horizontal subsurface flow-constructed wetland from domestic wastewater, Environ. Health Eng. Manage. J., 6 (2019) 105–111.
  5. L.R. Kalankesh, S. Rodríguez-Couto, M.A. Zazouli, Desalination and power generation of caspian sea by applying new designed microbial desalination cells in batch operation mode, Environ. Progr. Sustain. Energy, 38 (2019) 13205.
  6. R. Singh, N. Gautam, A. Mishra, R. Gupta, Heavy metals and living systems: an overview, Indian J. Pharmacol., 43 (2011) 246–253.
  7. X. Long, X. Yang, W. Ni, Current status and perspective on phytoremediation of heavy metal polluted soils, J. Appl. Ecol., 13 (2002) 757–762.
  8. A. Azimi, A. Azari, M. Rezakazemi, M. Ansarpour, Removal of heavy metals from industrial wastewaters: a review, ChemBioEng. Rev., 4 (2017) 37–59.
  9. Mahvi, F. Gholami, S. Nazmara, Cadmium biosorption from wastewater by Ulmus leaves and their ash, Euro. J. Sci. Res., 23 (2008) 203–197.
  10. E. Bazrafshan, L. Mohammadi, A. Ansari-Moghaddam, A.H. Mahvi, Heavy metals removal from aqueous environments by electrocoagulation process–a systematic review, J. Environ. Health Sci. Eng., 13 (2015) 74.
  11. A. Maleki, A.H. Mahvi, M.A. Zazouli, H. Izanloo, A.H. Barati, Aqueous cadmium removal by adsorption on barley hull and barley hull ash, Asian J. Chem., 23 (2011) 1373.
  12. L. Rafati, A. Mahvi, A. Asgari, S. Hosseini, Removal of chromium (VI) from aqueous solutions using Lewatit FO36 nano ion exchange resin, Int. J. Environ. Sci. Technol., 7 (2010) 147–156.
  13. M.R. Boldaji, A. Mahvi, S. Dobaradaran, S. Hosseini, Evaluating the effectiveness of a hybrid sorbent resin in removing fluoride from water, Int. J. Environ. Sci. Technol., 6 (2009) 629–632.
  14. M. Anjum, R. Miandad, M. Waqas, F. Gehany, M. Barakat, Remediation of wastewater using various nano-materials, Arabian J. Chem., 12 (2016) 4897–4919.
  15. Y.D. Shahamat, H. Asgharnia, L.R. Kalankesh, Data on wastewater treatment plant by using wetland method, Babol, Iran, Data Brief, 16 (2018) 1056–1061.
  16. F. Mansouri, R. Kalankesh, H. Hasankhani, The comparison of photo catalytic degradation of dissolved organic carbon (DOC) from water by UV/TiO2 in the presence and absence of iron ion, Global Nest J., 18 (2016) 392–401.
  17. K. Zare, V.K. Gupta, O. Moradi, A.S.H. Makhlouf, M. Sillanpää, M.N. Nadagouda, H. Sadegh, R. Shahryari-Ghoshekandi, A. Pal, Z.-J. Wang, A comparative study on the basis of adsorption capacity between CNTs and activated carbon as adsorbents for removal of noxious synthetic dyes: a review. J. Nanostruct. Chem., 5 (2015) 227–236.
  18. S.H. Huang, M.H. Liao, D.H. Chen, Direct binding and characterization of lipase onto magnetic nanoparticles, Biotechnol. Prog., 19 (2003) 1095–1100.
  19. F. Mansouri, L.R. Kalankesh, H. Hasankhani, Removal of humic acid from contaminated water by nano-sized TiO–SiO, Adv. Biol. Res., 9 (2015) 58–65.
  20. M. Malakootian, L. Ranandeh Kalankesh, M. Loloi, Efficiency of hybrid nanoparticles of TiO2/SiO2 in removal of lead from paint industry effluents, JMUMS, 23 (2013) 244–254.
  21. M.H. Ehrampoush, M. Miria, M.H. Salmani, A.H. Mahvi, Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract, J. Environ. Health Sci. Eng., 84 (2015) 13.
  22. M. Barakat, R. Kumar, Synthesis and characterization of porous magnetic silica composite for the removal of heavy metals from aqueous solution, J. Ind. Eng. Chem., 23 (2015) 93–99.
  23. M. Anbia, K. Kargosha, S. Khoshbooei, Heavy metal ions removal from aqueous media by modified magnetic mesoporous silica MCM-48, Chem. Eng. Res. Des., 93 (2015) 779–788.
  24. Q. Yuan, N. Li, Y. Chi, W. Geng, W. Yan, Y. Zhao, X. Li, B. Dong, Effect of large pore size of multifunctional mesoporous microsphere on removal of heavy metal ions, J. Hazard. Mater., 254 (2013) 157–165.
  25. Ren, X. Ding, W. Li, H. Wu, H. Yang, Highly efficient adsorption of heavy metals onto novel magnetic porous composites modified with amino groups, J. Chem. Eng. Data, 62 (2017) 1865–1875.
  26. J.K. Sahoo, A. Kumar, L. Rout, J. Rath, P. Dash, H. Sahoo, An investigation of heavy metal adsorption by hexa-dentate ligand-modified magnetic nanocomposites, Sep. Sci. Technol., 53 (2018) 863–876.
  27. A.P.H. Association, A.W.W. Association, Standard Methods for the Examination of Water and Wastewater, 1989: American Public Health Association.
  28. M. Ocaña, R. Rodriguez-Clemente, C.J. Serna, Uniform colloidal particles in solution: formation mechanisms, Adv. Mater., 7 (1995) 212–216.
  29. Z. Pourmanouchehri, M. Jafarzadeh, S. Kakaei, E.S. Khameneh, Magnetic nanocarrier containing 68 Ga–DTPA complex for targeted delivery of doxorubicin, J. Inorg. Organomet. Polym. Mater:, 28 (2018) 1980–1990.
  30. H. Qiu, B. Cui, G. Li, J. Yang, H. Peng, Y. Wang, N. Li, R. Gao, Z. Chang, Y. Wang, Novel Fe3O4@ZnO@ mSiO2 nanocarrier for targeted drug delivery and controllable release with microwave irradiation, J. Phys. Chem. C, 118 (2014) 14929–14937.
  31. X. Shen, Q. Wang, W. Chen, Y. Pang, One-step synthesis of water-dispersible cysteine functionalized magnetic Fe3O4 nanoparticles for mercury (II) removal from aqueous solutions, Appl. Surf. Sci., 317 (2014) 1028–1034.
  32. A. Idris, N.S.M. Ismail, N. Hassan, E. Misran, A.-F. Ngomsik, Synthesis of magnetic alginate beads based on maghemite nanoparticles for Pb (II) removal in aqueous solution, J. Ind. Eng. Chem., 18 (2012) 1582–1589.
  33. Uheida, M. Iglesias, C. Fontàs, Y. Zhang, M. Muhammed, Adsorption behavior of platinum group metals (Pd, Pt, Rh) on nonylthiourea-coated Fe3O4 nanoparticles, Sep. Sci. Technol., 41 (2006) 909–923.
  34. T. Cheng, M. Lee, M. Ko, T. Ueng, S. Yang, The heavy metal adsorption characteristics on metakaolin-based geopolymer, Appl. Clay Sci., 56 (2012) 90–96.
  35. S.S. Banerjee, D.-H. Chen, Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent, J. Hazard. Mater., 147 (2007) 792–799.
  36. Wang, B. Wang, J. Liu, L. Yu, H. Sun, J. Wu, Adsorption of Cd (II) from acidic aqueous solutions by tourmaline as a novel material, Chin. Sci. Bull., 57 (2012) 3218–3225.
  37. Das, N. Mondal, R. Bhaumik, P. Roy, Insight into adsorption equilibrium, kinetics and thermodynamics of lead onto alluvial soil, Int. J. Environ. Sci. Technol., 11 (2014) 1101–1114.
  38. M. El-Awady, T. Sami, Removal of heavy metals by cement kiln dust, Bull. Environ. Contam. Toxicol., 59 (1997) 603–610.
  39. Namasivayam, K. Ranganathan, Removal of Cd (II) from wastewater by adsorption on “waste” Fe (III) Cr (III) hydroxide, Water Res., 29 (1995) 1737–1744.
  40. Y.-M. Hao, C. Man, Z.-B. Hu, Effective removal of Cu (II) ions from aqueous solution by amino-functionalized magnetic nanoparticles, J. Hazard. Mater., 184 (2010) 392–399.
  41. X. Xin, Q. Wei, J. Yang, L. Yan, R. Feng, G. Chen, B. Du, H. Li, Highly efficient removal of heavy metal ions by aminefunctionalized mesoporous Fe3O4 nanoparticles, J. Chem. Eng., 184 (2012) 132–140.
  42. Erdem, G. Çölgeçen, R. Donat, The removal of textile dyes by diatomite earth, Colloid Interface Sci., 282 (2005) 314–319.
  43. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater., 8 (2009) 76.
  44. K. Jayaram, I. Murthy, H. Lalhruaitluanga, M. Prasad, Biosorption of lead from aqueous solution by seed powder of Strychnos potatorum L. Colloids Surf., B, 71 (2009) 248–254.
  45. K. Jayaram, M. Prasad, Removal of Pb (II) from aqueous solution by seed powder of Prosopis juliflora DC, J. Hazard. Mater., 169 (2009) 991–997.
  46. R. Schmid, C.N. Reilley, A rapid electrochemical method for the determination of metal chelate stability constants, ACS, 78 (1956) 5513–5518.
  47. R. Kumar, J. Chawla, Removal of cadmium ion from water/wastewater by nano-metal oxides: a review, Water Qual. Expo. Health, 5 (2014) 215–226.
  48. H.J. Mansoorian, A.H. Mahvi, A.J. Jafari, Removal of lead and zinc from battery industry wastewater using electrocoagulation process: influence of direct and alternating current by using iron and stainless steel rod electrodes, Sep. Purif. Technol., 135 (2014) 165–175.
  49. Kakavandi, R.R. Kalantary, M. Farzadkia, A.H. Mahvi, A. Esrafili, A. Azari, A.R. Yari, A.B. Javid, Enhanced chromium (VI) removal using activated carbon modified by zero valent iron and silver bimetallic nanoparticles, J. Environ. Health Sci. Eng., 12 (2014) 115.
  50. Bazrafshan, A.H. Mahvi, M.A. Zazouli, Removal of zinc and copper from aqueous solutions by electrocoagulation technology using iron electrodes, Asian J. Chem., 23 (2011) 5506.