References
- M. Halim, P. Conte, A. Piccolo, Potential availability of heavy
metals to phytoextraction from contaminated soils induced by
exogenous humic substances, Chemosphere, 52 (2003) 265–275.
- M.I. Ansari, A. Malik, Biosorption of nickel and cadmium by
metal resistant bacterial isolates from agricultural soil irrigated
with industrial wastewater, Bioresour. Technol., 98 (2007)
3149–3153.
- L.R. Kalankesh, M.A. Zazouli, Removal of salt from the Caspian
Sea using a single-and double-layer membrane microbial
desalination cell in continuous-mode operation, Desal. Wat.
Treat., 147 (2019) 83–89.
- L.R. Kalankesh, S. Rodríguez-Couto, Y.D. Shahamat, H.A.
Asgarnia, Removal efficiency of nitrate, phosphate, fecal and
total coliforms by horizontal subsurface flow-constructed
wetland from domestic wastewater, Environ. Health Eng.
Manage. J., 6 (2019) 105–111.
- L.R. Kalankesh, S. Rodríguez-Couto, M.A. Zazouli, Desalination
and power generation of caspian sea by applying new designed
microbial desalination cells in batch operation mode, Environ.
Progr. Sustain. Energy, 38 (2019) 13205.
- R. Singh, N. Gautam, A. Mishra, R. Gupta, Heavy metals and
living systems: an overview, Indian J. Pharmacol., 43 (2011)
246–253.
- X. Long, X. Yang, W. Ni, Current status and perspective on
phytoremediation of heavy metal polluted soils, J. Appl. Ecol.,
13 (2002) 757–762.
- A. Azimi, A. Azari, M. Rezakazemi, M. Ansarpour, Removal
of heavy metals from industrial wastewaters: a review,
ChemBioEng. Rev., 4 (2017) 37–59.
- Mahvi, F. Gholami, S. Nazmara, Cadmium biosorption from
wastewater by Ulmus leaves and their ash, Euro. J. Sci. Res.,
23 (2008) 203–197.
- E. Bazrafshan, L. Mohammadi, A. Ansari-Moghaddam,
A.H. Mahvi, Heavy metals removal from aqueous environments
by electrocoagulation process–a systematic review,
J. Environ. Health Sci. Eng., 13 (2015) 74.
- A. Maleki, A.H. Mahvi, M.A. Zazouli, H. Izanloo, A.H. Barati,
Aqueous cadmium removal by adsorption on barley hull and
barley hull ash, Asian J. Chem., 23 (2011) 1373.
- L. Rafati, A. Mahvi, A. Asgari, S. Hosseini, Removal of
chromium (VI) from aqueous solutions using Lewatit FO36
nano ion exchange resin, Int. J. Environ. Sci. Technol., 7 (2010)
147–156.
- M.R. Boldaji, A. Mahvi, S. Dobaradaran, S. Hosseini, Evaluating
the effectiveness of a hybrid sorbent resin in removing fluoride
from water, Int. J. Environ. Sci. Technol., 6 (2009) 629–632.
- M. Anjum, R. Miandad, M. Waqas, F. Gehany, M. Barakat,
Remediation of wastewater using various nano-materials,
Arabian J. Chem., 12 (2016) 4897–4919.
- Y.D. Shahamat, H. Asgharnia, L.R. Kalankesh, Data on wastewater
treatment plant by using wetland method, Babol, Iran,
Data Brief, 16 (2018) 1056–1061.
- F. Mansouri, R. Kalankesh, H. Hasankhani, The comparison of
photo catalytic degradation of dissolved organic carbon (DOC)
from water by UV/TiO2 in the presence and absence of iron ion,
Global Nest J., 18 (2016) 392–401.
- K. Zare, V.K. Gupta, O. Moradi, A.S.H. Makhlouf, M. Sillanpää,
M.N. Nadagouda, H. Sadegh, R. Shahryari-Ghoshekandi,
A. Pal, Z.-J. Wang, A comparative study on the basis of
adsorption capacity between CNTs and activated carbon as
adsorbents for removal of noxious synthetic dyes: a review.
J. Nanostruct. Chem., 5 (2015) 227–236.
- S.H. Huang, M.H. Liao, D.H. Chen, Direct binding and
characterization of lipase onto magnetic nanoparticles,
Biotechnol. Prog., 19 (2003) 1095–1100.
- F. Mansouri, L.R. Kalankesh, H. Hasankhani, Removal of humic
acid from contaminated water by nano-sized TiO–SiO, Adv.
Biol. Res., 9 (2015) 58–65.
- M. Malakootian, L. Ranandeh Kalankesh, M. Loloi, Efficiency of
hybrid nanoparticles of TiO2/SiO2 in removal of lead from paint
industry effluents, JMUMS, 23 (2013) 244–254.
- M.H. Ehrampoush, M. Miria, M.H. Salmani, A.H. Mahvi,
Cadmium removal from aqueous solution by green synthesis
iron oxide nanoparticles with tangerine peel extract, J. Environ.
Health Sci. Eng., 84 (2015) 13.
- M. Barakat, R. Kumar, Synthesis and characterization of porous
magnetic silica composite for the removal of heavy metals from
aqueous solution, J. Ind. Eng. Chem., 23 (2015) 93–99.
- M. Anbia, K. Kargosha, S. Khoshbooei, Heavy metal ions removal
from aqueous media by modified magnetic mesoporous silica
MCM-48, Chem. Eng. Res. Des., 93 (2015) 779–788.
- Q. Yuan, N. Li, Y. Chi, W. Geng, W. Yan, Y. Zhao, X. Li,
B. Dong, Effect of large pore size of multifunctional mesoporous
microsphere on removal of heavy metal ions, J. Hazard. Mater.,
254 (2013) 157–165.
- Ren, X. Ding, W. Li, H. Wu, H. Yang, Highly efficient adsorption
of heavy metals onto novel magnetic porous composites modified
with amino groups, J. Chem. Eng. Data, 62 (2017) 1865–1875.
- J.K. Sahoo, A. Kumar, L. Rout, J. Rath, P. Dash, H. Sahoo, An
investigation of heavy metal adsorption by hexa-dentate
ligand-modified magnetic nanocomposites, Sep. Sci. Technol.,
53 (2018) 863–876.
- A.P.H. Association, A.W.W. Association, Standard Methods
for the Examination of Water and Wastewater, 1989: American
Public Health Association.
- M. Ocaña, R. Rodriguez-Clemente, C.J. Serna, Uniform colloidal
particles in solution: formation mechanisms, Adv. Mater.,
7 (1995) 212–216.
- Z. Pourmanouchehri, M. Jafarzadeh, S. Kakaei, E.S. Khameneh,
Magnetic nanocarrier containing 68 Ga–DTPA complex for
targeted delivery of doxorubicin, J. Inorg. Organomet. Polym.
Mater:, 28 (2018) 1980–1990.
- H. Qiu, B. Cui, G. Li, J. Yang, H. Peng, Y. Wang, N. Li, R. Gao,
Z. Chang, Y. Wang, Novel Fe3O4@ZnO@ mSiO2 nanocarrier for
targeted drug delivery and controllable release with microwave
irradiation, J. Phys. Chem. C, 118 (2014) 14929–14937.
- X. Shen, Q. Wang, W. Chen, Y. Pang, One-step synthesis of
water-dispersible cysteine functionalized magnetic Fe3O4 nanoparticles
for mercury (II) removal from aqueous solutions,
Appl. Surf. Sci., 317 (2014) 1028–1034.
- A. Idris, N.S.M. Ismail, N. Hassan, E. Misran, A.-F. Ngomsik,
Synthesis of magnetic alginate beads based on maghemite
nanoparticles for Pb (II) removal in aqueous solution, J. Ind.
Eng. Chem., 18 (2012) 1582–1589.
- Uheida, M. Iglesias, C. Fontàs, Y. Zhang, M. Muhammed,
Adsorption behavior of platinum group metals (Pd, Pt, Rh) on
nonylthiourea-coated Fe3O4 nanoparticles, Sep. Sci. Technol.,
41 (2006) 909–923.
- T. Cheng, M. Lee, M. Ko, T. Ueng, S. Yang, The heavy metal
adsorption characteristics on metakaolin-based geopolymer,
Appl. Clay Sci., 56 (2012) 90–96.
- S.S. Banerjee, D.-H. Chen, Fast removal of copper ions by gum
arabic modified magnetic nano-adsorbent, J. Hazard. Mater.,
147 (2007) 792–799.
- Wang, B. Wang, J. Liu, L. Yu, H. Sun, J. Wu, Adsorption of Cd
(II) from acidic aqueous solutions by tourmaline as a novel
material, Chin. Sci. Bull., 57 (2012) 3218–3225.
- Das, N. Mondal, R. Bhaumik, P. Roy, Insight into adsorption
equilibrium, kinetics and thermodynamics of lead onto alluvial
soil, Int. J. Environ. Sci. Technol., 11 (2014) 1101–1114.
- M. El-Awady, T. Sami, Removal of heavy metals by cement
kiln dust, Bull. Environ. Contam. Toxicol., 59 (1997) 603–610.
- Namasivayam, K. Ranganathan, Removal of Cd (II) from
wastewater by adsorption on “waste” Fe (III) Cr (III) hydroxide,
Water Res., 29 (1995) 1737–1744.
- Y.-M. Hao, C. Man, Z.-B. Hu, Effective removal of Cu (II) ions
from aqueous solution by amino-functionalized magnetic
nanoparticles, J. Hazard. Mater., 184 (2010) 392–399.
- X. Xin, Q. Wei, J. Yang, L. Yan, R. Feng, G. Chen, B. Du,
H. Li, Highly efficient removal of heavy metal ions by aminefunctionalized
mesoporous Fe3O4 nanoparticles, J. Chem. Eng.,
184 (2012) 132–140.
- Erdem, G. Çölgeçen, R. Donat, The removal of textile dyes by
diatomite earth, Colloid Interface Sci., 282 (2005) 314–319.
- X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin,
J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric
photocatalyst for hydrogen production from water under
visible light, Nat. Mater., 8 (2009) 76.
- K. Jayaram, I. Murthy, H. Lalhruaitluanga, M. Prasad, Biosorption
of lead from aqueous solution by seed powder of
Strychnos potatorum L. Colloids Surf., B, 71 (2009) 248–254.
- K. Jayaram, M. Prasad, Removal of Pb (II) from aqueous solution
by seed powder of Prosopis juliflora DC, J. Hazard. Mater., 169
(2009) 991–997.
- R. Schmid, C.N. Reilley, A rapid electrochemical method for
the determination of metal chelate stability constants, ACS, 78
(1956) 5513–5518.
- R. Kumar, J. Chawla, Removal of cadmium ion from water/wastewater by nano-metal oxides: a review, Water Qual. Expo.
Health, 5 (2014) 215–226.
- H.J. Mansoorian, A.H. Mahvi, A.J. Jafari, Removal of lead and
zinc from battery industry wastewater using electrocoagulation
process: influence of direct and alternating current by using
iron and stainless steel rod electrodes, Sep. Purif. Technol., 135
(2014) 165–175.
- Kakavandi, R.R. Kalantary, M. Farzadkia, A.H. Mahvi,
A. Esrafili, A. Azari, A.R. Yari, A.B. Javid, Enhanced chromium
(VI) removal using activated carbon modified by zero valent
iron and silver bimetallic nanoparticles, J. Environ. Health Sci.
Eng., 12 (2014) 115.
- Bazrafshan, A.H. Mahvi, M.A. Zazouli, Removal of zinc
and copper from aqueous solutions by electrocoagulation
technology using iron electrodes, Asian J. Chem., 23 (2011)
5506.