References
- Y. Wada, M. Flörke, N. Hanasaki, S. Eisner, G. Fischer,
S. Tramberend, Y. Satoh, M.T.H. van Vliet, P. Yillia, C. Ringler,
P. Burek, D. Wiberg, Modeling global water use for the 21st
century: the water futures and solutions (WFaS) initiative and
its approaches, Geosci. Model Dev., 9 (2016) 175–222.
- T. Sato, M. Qadir, S. Yamamoto, T. Endo, A. Zahoor, Global,
regional, and country level need for data on wastewater generation,
treatment, and use, Agric. Water Manage., 130 (2013)
1–13.
- D. Lakherwal, Adsorption of heavy metals: a review, Int. J.
Environ. Res. Dev., 4 (2014) 41–48.
- S. Pandey, Water pollution and health, Kathmandu Univ. Med.
J., 4 (2006) 128–134.
- A. Nasrullah, B. Saad, A.H. Bhat, A.S. Khan, M. Danish,
M.H. Isa, A. Naeem, Mangosteen peel waste as a sustainable
precursor for high surface area mesoporous activated carbon:
characterization and application for methylene blue removal,
J. Cleaner Prod., 211 (2019) 1190–1200.
- Environment SA, Unit SD, Region SA, Pakistan Strategic Country
Environmental Assessment (In Two Volumes) Volume I: Main
Report South Asia Environment and Social Development Unit
South Asia Region Pakistan Strategic Country Environmental
Assessment Volume I, 2006, I (36946). Available at: http://siteresources.worldbank.org/SOUTHASIAEXT/Resources/
Publications/448813-1188777211460/pakceavolume1.pdf
- A. Aeisyah, M.H.S. Ismail, K. Lias, S. Izhar, Adsorption process
of heavy metals by low-cost adsorbent: a review, Res. J. Chem.
Environ., 18 (2014) 91–102.
- S. Babel, T.A. Kurniawan, Low-cost adsorbents for heavy metals
uptake from contaminated water: a review, J. Hazard. Mater.,
97 (2003) 219–243.
- M.K. Daud, M. Nafees, S. Ali, M. Rizwan, R.A. Bajwa,
M.B. Shakoor,
M.U. Arshad, S.A.S. Chatha, F. Deeba, W. Murad,
I. Malook, S.J. Zhu, Drinking water quality status and contamination
in Pakistan, Biomed Res. Int., 2017 (2017) 18p.
- A. Farooqi, H. Masuda, N. Firdous, Toxic fluoride and arsenic
contaminated groundwater in the Lahore and Kasur districts,
Punjab, Pakistan, and possible contaminant sources, Environ.
Pollut., 145 (2007) 839–849.
- E.T. Igunnu, G.Z. Chen, Produced water treatment technologies,
Int. J. Low-Carbon Technol., 9 (2014) 157–177.
- D. Sud, G. Mahajan, M.P. Kaur, Agricultural waste material as
potential adsorbent for sequestering heavy metal ions from
aqueous solutions - a review, Bioresour. Technol., 99 (2008)
6017–6027.
- A. Jamshaid, A. Hamid, N. Muhammad, A. Naseer, M. Ghauri,
J. Iqbal, S. Rafiq, N.S. Shah, Cellulose-based materials for
the removal of heavy metals from wastewater–an overview,
ChemBioEng Rev., 4 (2017) 240–256.
- Z. Shirani, C. Santhosh, J. Iqbal, A. Bhatnagar, Waste Moringa
oleifera seed pods as green sorbent for efficient removal of toxic
aquatic pollutants, J. Environ. Manage., 227 (2018) 95–106.
- S.O. Lesmana, N. Febriana, F.E. Soetaredjo, J. Sunarso, S. Ismadji,
Studies on potential applications of biomass for the separation
of heavy metals from water and wastewater, Biochem. Eng. J.,
44 (2009) 19–41.
- T. Hatakeyama, H. Hatakeyama, Lignin structure, properties,
and application, biopolymers, Adv. Polym. Sci., 232 (2009) 1–63.
- A. Demirbas, Adsorption of lead and cadmium ions in aqueous
solutions onto modified lignin from alkali glycerol delignication,
J. Hazard. Mater., 109 (2004) 221–226.
- A. Naseer, A. Jamshaid, A. Hamid, N. Muhammad, M. Ghauri,
J. Iqbal, S. Rafiq, S. Khuram, N.S. Shah, Lignin and lignin based
materials for the removal of heavy metals from waste water – an
overview, Z. Phys. Chem., 233 (2019) 315–345.
- S.K. Srivastava, A.K. Singh, A. Sharma, Studies on the uptake
of lead and zinc by lignin obtained from black liquor–a paper
industry waste material, Environ. Technol., 15 (1994) 353–361.
- A. Agarwal, B. Kapil, Removal of lead from aqueous solution
using black liquor – a pulp mill waste, Int. J. Sci. Res., 3 (2014)
2047–2050.
- D. Stewart, Lignin as a base material for materials applications:
chemistry, application and economics, Ind. Crops Prod., 27 (2008)
202–207.
- R.M. Rowell, Removal of Metal Ions from Contaminated Water
Using Agricultural Residues, 2nd International Conference
on Environmentally-Compatible Forest Products, Fernando
Pessoa University, Oporto, Portugal, 2006, pp. 20–22.
- S. Lin, R. Huang, Y. Cheng, J. Liu, B.L.T. Lau, M.R. Wiesner,
Silver nanoparticle-alginate composite beads for point-of-use
drinking water disinfection, Water Res., 47 (2013) 3959–3965.
- M. Rajkumar, N. Meenakshisundaram, V. Rajendran, Development
of nanocomposites based on hydroxyapatite/sodium
alginate: synthesis and characterization, Mater. Charact., 62 (2011)
469–479.
- Suhas, P.J.M. Carrott, M.M.L. Ribeiro Carrott, Lignin–from
natural adsorbent to activated carbon: a review, Bioresour.
Technol., 98 (2007) 2301–2312.
- A. Jamshaid, J. Iqbal, A. Hamid, M. Ghauri, N. Muhammad,
A. Nasrullah, S. Rafiq, N.S. Shah, Fabrication and evaluation
of cellulose-alginate-hydroxyapatite beads for the removal
of heavy metal ions from aqueous solutions, Z. Phys. Chem.,
233 (2018) 1351–1375.
- W. Zheng, X.-m. Li, Q. Yang, G.-m. Zeng, X.-x. Shen, Y. Zhang,
J.-j. Liu, Adsorption of Cd(II) and Cu(II) from aqueous solution
by carbonate hydroxylapatite derived from eggshell waste,
J. Hazard. Mater., 147 (2007) 534–539.
- A. Nasrullah, A.H. Bhat, M.H. Isa, M. Danish, A. Naeem,
N. Muhammad, T. Khan, Efficient removal of methylene blue
dye using mangosteen peel waste: kinetics, isotherms and
artificial neural network (ANN) modeling, Desal. Wat. Treat.,
86 (2017) 191–202.
- S. Lagergren, About the theory of so-called adsorption of solid
substance, Handlinger, 24 (1898) 1–39.
- Y.S. Ho, G. McKay, Pseudo-second-order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- X. Chen, Modeling of experimental adsorption isotherm data,
Information, 6 (2015) 14–22.
- J. Iqbal, N.S. Shah, M. Sayed, M. Imran, N. Muhammad, F.M.
Howari, S.A. Alkhoori, J.A. Khan, Z. Khan, A. Bhatnagar, K.
Polychronopoulou, I. Ismail, M.A. Haija, Synergistic effects
of activated carbon and nano-zerovalent copper on the
performance of hydroxyapatite-alginate beads for the removal
of As3+ from aqueous solution, J. Cleaner Prod., 235 (2019)
875–886.
- Q. Zhang, S. Dan, K. Du, Fabrication and characterization of
magnetic hydroxyapatite entrapped agarose composite beads
with high adsorption capacity for heavy metal removal, Ind.
Eng. Chem. Res., 56 (2017) 8705–8712.
- C. Ren, X. Ding, W. Li, H. Wu, H. Yang, Highly efficient
adsorption of heavy metals onto novel magnetic porous
composites modified with amino groups, J. Chem. Eng. Data,
62 (2017) 1865–1875.
- A. Dutta, Y. Diao, R. Jain, E.R. Rene, S. Dutta, Adsorption of
cadmium from aqueous solution onto coffee grounds and
wheat straw: equilibrium and kinetic study, J. Environ. Eng.,
142 (2015) 1–6.
- L. Li, J. Iqbal, Y. Zhu, P. Zhang, W. Chen, A. Bhatnagar, Y.
Du, Chitosan/Ag-hydroxyapatite nanocomposite beads as a
potential adsorbent for the efficient removal of toxic aquatic
pollutants, Int. J. Biol. Macromol., 210 (Pt B) (2018) 1752–1759.
- Y. Wu, S. Zhang, X. Guo, H. Huang, Adsorption of chromium(III)
on lignin, Bioresour. Technol., 99 (2008) 7709–7715.
- N. Mahmood, Z. Yuan, J. Schmidt, C.C. Xu, Hydrolytic
depolymerization of hydrolysis lignin: effects of catalysts and
solvents, Bioresour. Technol., 190 (2015) 416–419.
- P. Senthil Kumar, K. Ramakrishnan, S. Dinesh Kirupha,
S. Sivanesan, Thermodynamic and kinetic studies of cadmium
adsorption from aqueous solution onto rice husk, Braz. J. Chem.
Eng., 27 (2010) 347–355.
- R. Rostamian, H. Behnejad, Insights into doxycycline adsorption
onto graphene nanosheet: a combined quantum mechanics,
thermodynamics, and kinetic study, Environ. Sci. Pollut. Res.,
25 (2018) 2528–2537.
- M. Irani, M. Amjadi, M.A. Mousavian, Comparative study of
lead sorption onto natural perlite, dolomite and diatomite,
Chem. Eng. J., 178 (2011) 317–323.
- A. Ahmadi, S. Heidarzadeh, A.R. Mokhtari, E. Darezereshki,
H.A. Harouni, Optimization of heavy metal removal from
aqueous solutions by maghemite (γ-Fe2O3) nanoparticles using
response surface methodology, J. Geochem. Explor., 147 Part B
(2014) 151–158.
- A. Tripathi, M. Rawat Ranjan, Heavy metal removal from
wastewater using low cost adsorbents, J. Bioremed. Biodegrad.,
6 (2015) 1–5.
- B.G. Lee, R.M. Rowell, Removal of heavy metal ions from
aqueous solutions using lignocellulosic fibers, J. Nat. Fibers,
1 (2004) 97–108.
- F. Seyedvakili, M. Samipoorgiri, Thermo-kinetic investigation
of heavy metal ions adsorption onto lignin considering
coupled adsorption–desorption mechanisms: modeling and
experimental validation, Int. J. Model. Simul. Sci. Comput.,
9 (2018) 1850014.