References

  1. Y. Wada, M. Flörke, N. Hanasaki, S. Eisner, G. Fischer, S. Tramberend, Y. Satoh, M.T.H. van Vliet, P. Yillia, C. Ringler, P. Burek, D. Wiberg, Modeling global water use for the 21st century: the water futures and solutions (WFaS) initiative and its approaches, Geosci. Model Dev., 9 (2016) 175–222.
  2. T. Sato, M. Qadir, S. Yamamoto, T. Endo, A. Zahoor, Global, regional, and country level need for data on wastewater generation, treatment, and use, Agric. Water Manage., 130 (2013) 1–13.
  3. D. Lakherwal, Adsorption of heavy metals: a review, Int. J. Environ. Res. Dev., 4 (2014) 41–48.
  4. S. Pandey, Water pollution and health, Kathmandu Univ. Med. J., 4 (2006) 128–134.
  5. A. Nasrullah, B. Saad, A.H. Bhat, A.S. Khan, M. Danish, M.H. Isa, A. Naeem, Mangosteen peel waste as a sustainable precursor for high surface area mesoporous activated carbon: characterization and application for methylene blue removal, J. Cleaner Prod., 211 (2019) 1190–1200.
  6. Environment SA, Unit SD, Region SA, Pakistan Strategic Country Environmental Assessment (In Two Volumes) Volume I: Main Report South Asia Environment and Social Development Unit South Asia Region Pakistan Strategic Country Environmental Assessment Volume I, 2006, I (36946). Available at: http://siteresources.worldbank.org/SOUTHASIAEXT/Resources/ Publications/448813-1188777211460/pakceavolume1.pdf
  7. A. Aeisyah, M.H.S. Ismail, K. Lias, S. Izhar, Adsorption process of heavy metals by low-cost adsorbent: a review, Res. J. Chem. Environ., 18 (2014) 91–102.
  8. S. Babel, T.A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: a review, J. Hazard. Mater., 97 (2003) 219–243.
  9. M.K. Daud, M. Nafees, S. Ali, M. Rizwan, R.A. Bajwa, M.B. Shakoor, M.U. Arshad, S.A.S. Chatha, F. Deeba, W. Murad, I. Malook, S.J. Zhu, Drinking water quality status and contamination in Pakistan, Biomed Res. Int., 2017 (2017) 18p.
  10. A. Farooqi, H. Masuda, N. Firdous, Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan, and possible contaminant sources, Environ. Pollut., 145 (2007) 839–849.
  11. E.T. Igunnu, G.Z. Chen, Produced water treatment technologies, Int. J. Low-Carbon Technol., 9 (2014) 157–177.
  12. D. Sud, G. Mahajan, M.P. Kaur, Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - a review, Bioresour. Technol., 99 (2008) 6017–6027.
  13. A. Jamshaid, A. Hamid, N. Muhammad, A. Naseer, M. Ghauri, J. Iqbal, S. Rafiq, N.S. Shah, Cellulose-based materials for the removal of heavy metals from wastewater–an overview, ChemBioEng Rev., 4 (2017) 240–256.
  14. Z. Shirani, C. Santhosh, J. Iqbal, A. Bhatnagar, Waste Moringa oleifera seed pods as green sorbent for efficient removal of toxic aquatic pollutants, J. Environ. Manage., 227 (2018) 95–106.
  15. S.O. Lesmana, N. Febriana, F.E. Soetaredjo, J. Sunarso, S. Ismadji, Studies on potential applications of biomass for the separation of heavy metals from water and wastewater, Biochem. Eng. J., 44 (2009) 19–41.
  16. T. Hatakeyama, H. Hatakeyama, Lignin structure, properties, and application, biopolymers, Adv. Polym. Sci., 232 (2009) 1–63.
  17. A. Demirbas, Adsorption of lead and cadmium ions in aqueous solutions onto modified lignin from alkali glycerol delignication, J. Hazard. Mater., 109 (2004) 221–226.
  18. A. Naseer, A. Jamshaid, A. Hamid, N. Muhammad, M. Ghauri, J. Iqbal, S. Rafiq, S. Khuram, N.S. Shah, Lignin and lignin based materials for the removal of heavy metals from waste water – an overview, Z. Phys. Chem., 233 (2019) 315–345.
  19. S.K. Srivastava, A.K. Singh, A. Sharma, Studies on the uptake of lead and zinc by lignin obtained from black liquor–a paper industry waste material, Environ. Technol., 15 (1994) 353–361.
  20. A. Agarwal, B. Kapil, Removal of lead from aqueous solution using black liquor – a pulp mill waste, Int. J. Sci. Res., 3 (2014) 2047–2050.
  21. D. Stewart, Lignin as a base material for materials applications: chemistry, application and economics, Ind. Crops Prod., 27 (2008) 202–207.
  22. R.M. Rowell, Removal of Metal Ions from Contaminated Water Using Agricultural Residues, 2nd International Conference on Environmentally-Compatible Forest Products, Fernando Pessoa University, Oporto, Portugal, 2006, pp. 20–22.
  23. S. Lin, R. Huang, Y. Cheng, J. Liu, B.L.T. Lau, M.R. Wiesner, Silver nanoparticle-alginate composite beads for point-of-use drinking water disinfection, Water Res., 47 (2013) 3959–3965.
  24. M. Rajkumar, N. Meenakshisundaram, V. Rajendran, Development of nanocomposites based on hydroxyapatite/sodium alginate: synthesis and characterization, Mater. Charact., 62 (2011) 469–479.
  25. Suhas, P.J.M. Carrott, M.M.L. Ribeiro Carrott, Lignin–from natural adsorbent to activated carbon: a review, Bioresour. Technol., 98 (2007) 2301–2312.
  26. A. Jamshaid, J. Iqbal, A. Hamid, M. Ghauri, N. Muhammad, A. Nasrullah, S. Rafiq, N.S. Shah, Fabrication and evaluation of cellulose-alginate-hydroxyapatite beads for the removal of heavy metal ions from aqueous solutions, Z. Phys. Chem., 233 (2018) 1351–1375.
  27. W. Zheng, X.-m. Li, Q. Yang, G.-m. Zeng, X.-x. Shen, Y. Zhang, J.-j. Liu, Adsorption of Cd(II) and Cu(II) from aqueous solution by carbonate hydroxylapatite derived from eggshell waste, J. Hazard. Mater., 147 (2007) 534–539.
  28. A. Nasrullah, A.H. Bhat, M.H. Isa, M. Danish, A. Naeem, N. Muhammad, T. Khan, Efficient removal of methylene blue dye using mangosteen peel waste: kinetics, isotherms and artificial neural network (ANN) modeling, Desal. Wat. Treat., 86 (2017) 191–202.
  29. S. Lagergren, About the theory of so-called adsorption of solid substance, Handlinger, 24 (1898) 1–39.
  30. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  31. X. Chen, Modeling of experimental adsorption isotherm data, Information, 6 (2015) 14–22.
  32. J. Iqbal, N.S. Shah, M. Sayed, M. Imran, N. Muhammad, F.M. Howari, S.A. Alkhoori, J.A. Khan, Z. Khan, A. Bhatnagar, K. Polychronopoulou, I. Ismail, M.A. Haija, Synergistic effects of activated carbon and nano-zerovalent copper on the performance of hydroxyapatite-alginate beads for the removal of As3+ from aqueous solution, J. Cleaner Prod., 235 (2019) 875–886.
  33. Q. Zhang, S. Dan, K. Du, Fabrication and characterization of magnetic hydroxyapatite entrapped agarose composite beads with high adsorption capacity for heavy metal removal, Ind. Eng. Chem. Res., 56 (2017) 8705–8712.
  34. C. Ren, X. Ding, W. Li, H. Wu, H. Yang, Highly efficient adsorption of heavy metals onto novel magnetic porous composites modified with amino groups, J. Chem. Eng. Data, 62 (2017) 1865–1875.
  35. A. Dutta, Y. Diao, R. Jain, E.R. Rene, S. Dutta, Adsorption of cadmium from aqueous solution onto coffee grounds and wheat straw: equilibrium and kinetic study, J. Environ. Eng., 142 (2015) 1–6.
  36. L. Li, J. Iqbal, Y. Zhu, P. Zhang, W. Chen, A. Bhatnagar, Y. Du, Chitosan/Ag-hydroxyapatite nanocomposite beads as a potential adsorbent for the efficient removal of toxic aquatic pollutants, Int. J. Biol. Macromol., 210 (Pt B) (2018) 1752–1759.
  37. Y. Wu, S. Zhang, X. Guo, H. Huang, Adsorption of chromium(III) on lignin, Bioresour. Technol., 99 (2008) 7709–7715.
  38. N. Mahmood, Z. Yuan, J. Schmidt, C.C. Xu, Hydrolytic depolymerization of hydrolysis lignin: effects of catalysts and solvents, Bioresour. Technol., 190 (2015) 416–419.
  39. P. Senthil Kumar, K. Ramakrishnan, S. Dinesh Kirupha, S. Sivanesan, Thermodynamic and kinetic studies of cadmium adsorption from aqueous solution onto rice husk, Braz. J. Chem. Eng., 27 (2010) 347–355.
  40. R. Rostamian, H. Behnejad, Insights into doxycycline adsorption onto graphene nanosheet: a combined quantum mechanics, thermodynamics, and kinetic study, Environ. Sci. Pollut. Res., 25 (2018) 2528–2537.
  41. M. Irani, M. Amjadi, M.A. Mousavian, Comparative study of lead sorption onto natural perlite, dolomite and diatomite, Chem. Eng. J., 178 (2011) 317–323.
  42. A. Ahmadi, S. Heidarzadeh, A.R. Mokhtari, E. Darezereshki, H.A. Harouni, Optimization of heavy metal removal from aqueous solutions by maghemite (γ-Fe2O3) nanoparticles using response surface methodology, J. Geochem. Explor., 147 Part B (2014) 151–158.
  43. A. Tripathi, M. Rawat Ranjan, Heavy metal removal from wastewater using low cost adsorbents, J. Bioremed. Biodegrad., 6 (2015) 1–5.
  44. B.G. Lee, R.M. Rowell, Removal of heavy metal ions from aqueous solutions using lignocellulosic fibers, J. Nat. Fibers, 1 (2004) 97–108.
  45. F. Seyedvakili, M. Samipoorgiri, Thermo-kinetic investigation of heavy metal ions adsorption onto lignin considering coupled adsorption–desorption mechanisms: modeling and experimental validation, Int. J. Model. Simul. Sci. Comput., 9 (2018) 1850014.