References

  1. A. Gennaro, A.A. Isse, M.-G. Severin, E. Vianello, I. Bhugun, J.-M. Saveant, Mechanism of the electrochemical reduction of carbon dioxide at inert electrodes in media of low proton availability, J. Chem. Soc., Faraday Trans., 92 (1996) 3963–3968.
  2. V.S. Bagotzky, N.V. Oetrova, Electrochemical reduction of carbon dioxide, Russ. J. Electrochem., 31 (1995) 409–412.
  3. C. Costentin, M. Robert, J.M. Saveant, Catalysis of the electrochemical reduction of carbon dioxide, Chem. Soc. Rev., 42 (2013) 2423–2436.
  4. C.F.C. Lim, D.A. Harrington, A.T. Marshall, Altering the selectivity of galvanostatic CO2 reduction on Cu cathodes by periodic cyclic voltammetry and potentiostatic steps, Electrochim. Acta, 222 (2016) 133–140.
  5. Y. Song, R. Peng, D.K. Hensley, P.V. Bonnesen, L. Liang, Z. Wu, H.M. Meyer III, M. Chi, C. Ma, B.G. Sumpter. A.J. Rondinone, High-selectivity electrochemical conversion of CO2 to ethanol using a copper nanoparticle/n-doped graphene electrode, Chemistry Select, 1 (2016) 6055–6061.
  6. S. Kaneco, K. Iiba, H. Katsumata, T. Suzuki, K. Ohta, Electrochemical reduction of high-pressure carbon dioxide at a Cu electrode in cold methanol with CsOH supporting salt, Chem. Eng. J., 128 (2007) 47–50.
  7. Q. Zhu, X. Sun, D. Yang, J. Ma, X. Kang, L. Zheng, J. Zhang, Z. Wu, B. Han, Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex, Nat. Commun., 10 (2019) 3851.
  8. M. Jitaru, D.A. Lowy, M. Toma, B.C. Toma, L. Oniciu, Electrochemical reduction of carbon dioxide on flat metallic cathodes, J. Appl. Electrochem., 27 (1997) 875–889.
  9. R.P.S. Chaplin, A.A. Wragg, Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to formate formation, J. Appl. Electrochem., 33 (2003) 1107–1123.
  10. K. Subramanian, K. Asokan, D. Jeevarathinam, M. Chandrasekaran, Electrochemical membrane reactor for the reduction of carbon dioxide to formate, J. Appl. Electrochem., 37 (2007) 255–260.
  11. M. Gattrell, N. Gupta, A. Co, A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper, J. Electroanal. Chem., 594 (2006) 1–19.
  12. J.A. Darr, J. Zhang, N.M. Makwana, X. Weng, Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions, Chem. Rev., 117 (2017) 11125–11238.
  13. P. Ball, G. Li, Science at the atomic scale, Nature, 355 (1992) 27–28.
  14. M.I. Awad, B.A. AL Jahdaly, M.A. Kassem, O.A. Hazazi, Nickel oxide nanoparticles modified gold electrode for fractional determination of dopamine and ascorbic acid, J. Anal. Chem., 73 (2018) 1172–1178.
  15. M. Lucas, C. Mohr, U. Rodemerck, A. Bruckner, J. Radnik, H. Hofmeister, P. Claus, Supported gold nanoparticles: in-depth catalyst characterization and application in hydrogenation and oxidation reactions, Catal. Today, 72 (2002) 63–78.
  16. S.H. Joo, K. Kwon, D.J. You, C. Pak, H. Chang, J.M. Kim, Preparation of high loading Pt nanoparticles on ordered mesoporous carbon with a controlled Pt size and its effects on oxygen reduction and methanol oxidation reactions, Electrochim. Acta, 54 (2009) 5746–5753.
  17. I. Roche, E. Chaine, M. Chatenet, J. Vondrak, Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium: physical characterizations and ORR mechanism, J. Phys. Chem. C, 111 (2007) 1434–1443.
  18. M.L. Calegar, F.H. Lima, E.A. Ticianelli, Oxygen reduction reaction on nanosized manganese oxide particles dispersed on carbon in alkaline solutions, J. Power Sources, 158 (2006) 735–739.
  19. W. Yao, J. Yang, J. Wang, Y. Nuli, Chemical deposition of platinum nanoparticles on iridium oxide for oxygen electrode of unitized regenerative fuel cell, Electrochem. Commun., 9 (2007) 1029–1034.
  20. G.C. Bond, Gold: a relative new catalyst, Catal. Today, 72 (2002) 5–9.
  21. M. Haruta, Size- and support-dependency in the catalysis of gold, Catal. Today, 36 (1997) 153–166.
  22. A.S. Danial, M.M. Saleh, S.A. Salih, M.I. Awad, On the synthesis of nickel oxide nanoparticles by sol–gel technique and its electrocatalytic oxidation of glucose, J. Power Sources, 293 (2015) 101–108.
  23. M. Haruta, M. Date, Advances in the catalysis of Au nanoparticles, Appl. Catal., A, 222 (2001) 427–437.
  24. K. Hara, A. Kudo, T. Sakata, Electrochemical CO2 reduction on a glassy carbon electrode under high pressure, J. Electroanal. Chem., 421 (1997) 1–4.
  25. R. Ortiz, O.P. Marquez, J. Marquez, C. Gutiérrez, FTIR spectroscopy study of the electrochemical reduction of CO2 on various metal electrodes in methanol, J. Electroanal. Chem., 390 (1995) 99–107.
  26. H. Li, C. Oloman, Development of a continuous reactor for the electro-reduction of carbon dioxide to formate – part 1: process variables, J. Appl. Electrochem., 36 (2006) 1105–1115.
  27. E. Portenkirchner, J. Gasiorowski, K. Oppelt, S. Schlager, C. Schwarzinger, H. Neugebauer, G. Knçr, N.S. Sariciftci, Electrocatalytic reduction of carbon dioxide to carbon monoxide by a polymerized film of an alkynyl-substituted rhenium(I) complex, ChemCatChem, 5 (2013) 1790–1796.
  28. S. Kaneco, N.-H. Hiei, Y. Xing, H. Katsumata, H. Ohnishi, T. Suzuki, K. Ohta, Electrochemical conversion of carbon dioxide to methane in aqueous NaHCO3 solution at less than 273 K, Electrochim. Acta, 48 (2002) 51–55.
  29. S. Kaneco, K. Iiba, H. Katsumata, T. Suzuki, K. Ohta, Electrochemical reduction of high-pressure CO2 at a Cu electrode in cold methanol, Electrochim. Acta, 51 (2006) 4880–4885.
  30. S. Kaneco, K. Iiba, H. Katsumata, T. Suzuki, K. Ohta, Effect of sodium cation on the electrochemical reduction of CO2 at a copper electrode in methanol, J. Solid State Electrochem., 11 (2007) 490–495.
  31. B. Innocent, D. Liaigre, D. Pasquier, F. Ropital, J.M. Léger, K. Kokoh, Electro-reduction of carbon dioxide to formate on a lead electrode in an aqueous medium, J. Appl. Electrochem., 39 (2009) 227–232.
  32. Y. Tomita, S. Teruya, O. Koga, Y. Hori, Electrochemical reduction of carbon dioxide at a platinum electrode in acetonitrile‐water mixtures, J. Electrochem. Soc., 147 (2000) 4164–4167.
  33. V.M. Barragan, A. Heinzel, Estimation of the membrane methanol diffusion coefficient from open circuit voltage measurements in a direct methanol fuel cell, J. Power Sources, 104 (2002) 66–72.
  34. C. Paliteiro, N. Martins, Electroreduction of oxygen on a (100)-like polycrystalline gold surface in an alkaline solution containing Pb(II), Electrochim. Acta, 44 (1998) 1359–1368.
  35. S. Strbac, R. Adzic, The influence of pH on reaction pathways for O2 reduction on the Au(100) face, Electrochim. Acta, 41 (1996) 2903–2908.
  36. C.J. Chang, Y. Deng, C. Shi, C.K. Chang, F.C. Anson, D.G. Nocera, Electrocatalytic four-electron reduction of oxygen to water by a highly flexible cofacial cobalt bisporphyrin, Chem. Commun., 15 (2000) 1355–1356.
  37. P. Salaun, B. Planer-Friedrich, C.M.G. van den Berg, Inorganic arsenic speciation in water and seawater by anodic stripping voltammetry with a gold microelectrode, Anal. Chim. Acta, 585 (2007) 312–322.
  38. A. Hamelin, Cyclic voltammetry at gold single-crystal surfaces. Part 1. Behavior at low-index faces, J. Electroanal. Chem., 407 (1996) 1–11.
  39. M.I. Awad, T. Ohsaka, An electrocatalytic oxygen reduction by copper nanoparticles-modified Au(100)-rich polycrystalline gold electrode in 0.5 M KOH, J. Power Sources, 226 (2013) 306–312.
  40. E. Chow, E.L.S. Wong, T. Böcking, Q.T. Nguyen, D.B. Hibbert, J.J. Gooding, Analytical performance and characterization of MPA-Gly-Gly-His modified sensors, Sens. Actuators, B, 111 (2005) 540–548.
  41. I. Kereković, Electrochemical evaluation of binding copper and copper histidine complex on histidine modified gold electrode, Int. J. Electrochem. Sci., 9 (2014) 5596–5606.
  42. D. Pletcher, The cathodic reduction of carbon dioxide— what can it realistically achieve? a mini-review, Electrochem. Commun. 61 (2015) 97–101.
  43. X. Zhu, K. Gupta, M. Bersani, J.A. Darr, P.R. Shearing, D.J.L. Brett, Electrochemical reduction of carbon dioxide on copperbased nanocatalysts using the rotating ring-disc electrode, Electrochim. Acta, 283 (2018) 1037–1044.
  44. R. Kortlever, K.H. Tan, Y. Kwon, M.T.M. Koper, Electrochemical carbon dioxide and bicarbonate reduction on copper in weakly alkaline media, J. Solid State Electrochem., 17 (2013) 1843–1849.
  45. A. Schizodimou, G. Kyriacou, Acceleration of the reduction of carbon dioxide in the presence of multivalent cations, Electrochim. Acta, 78 (2012) 171–176.
  46. Y. Hori, A. Murata, R. Takahashi, Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution, J. Chem. Soc. Faraday Trans., 21 (1990) 2309–2326.
  47. A.S. Varela, M. Kroschel, T. Reier, P. Strasser, Controlling the selectivity of CO2 electroreduction on copper: the effect of the electrolyte concentration and the importance of the local pH, Catal. Today, 260 (2016) 8–13.
  48. R.S. Kumar, S.S. Kumar, M.A. Kulandainathan, Highly selective electrochemical reduction of carbon dioxide using Cu based metal-organic framework as an electrocatalyst, Electrochem. Commun., 25 (2012) 70–73.
  49. Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: insights into materials design, Science, 355 (2017) 1–12.
  50. C. Shi, H.A. Hansen, A.C. Lausche, J.K. Nørskov, Trends in electrochemical CO2 reduction activity for open and closepacked metal surfaces, Phys. Chem. Chem. Phys., 16 (2014) 4720–4727.
  51. M.A. Kassem, O. Hazazi, T. Ohsaka, M.I. Awad, Electroanalysis of pyridoxine at copper nanoparticles modified polycrystalline gold electrode, Electroanalysis 2015, 28 (2016) 539–545.