References

  1. W. Schipper, Phosphorus: too big to fail, Eur. J. Inorg. Chem., 10 (2014) 1567–1571.
  2. I. Ali, V.K. Gupta, Advances in water treatment by adsorption technology, Nat. Protoc., 1 (2007) 2661–2667.
  3. J. Peter, Phosphorus Adsorption through Engineered Biochars Produced from Local Waste Products, Civil and Environmental Engineering Department, University of Dayton, Ohio, 2016. Available at: https://ecommons.udayton.edu/uhp_theses/141
  4. R. Xie, Y. Chen, T. Cheng, Y. Lai, W. Jiang, Z. Yang, Study on an effective industrial waste-based adsorbent for the adsorptive removal of phosphorus from wastewater: equilibrium and kinetics studies, Water Sci. Technol., 73 (2016) 1891–1900.
  5. C. Jiang, L. Jia, Y. He, B. Zhang, G. Kirumba, J. Xie, Adsorptive removal of phosphorus from aqueous solution using sponge iron and zeolite, J. Colloid Interface Sci., 402 (2013) 246–252.
  6. C. Jiang, L. Jia, B. Zhang, Y. He, G. Kirumba, Comparison of quartz sand, anthracite, shale and biological ceramsite for adsorptive removal of phosphorus from aqueous solution, J. Environ. Sci., 26 (2014) 466–477.
  7. S. Moharami, M. Jalali, Use of modified clays for removal of phosphorus from aqueous solutions, Environ. Monit. Assess., 187 (2015), doi: 10.1007/s10661–015–4854–2.
  8. A.M. Shanableh, M.M. Elsergany, Removal of phosphate from water using six Al-, Fe-, and Al-Fe-modified bentonite adsorbents, J. Environ. Sci. Health. Part A, 48 (2013) 223–231.
  9. A. Shanableh, G. Enshasi, M. Elsergany, Phosphorous adsorption using Al3+/Fe3+-modified bentonite adsorbents— effect of Al3+ and Fe3+ combinations, Desal. Wat. Treat., 57 (2016) 15628–15634.
  10. M. Shanableh, A. Elsergany, Phosphorus Removal using Al-modified Bentonite Clay–effect of Particle Size, 2012 Asia Pacific Conference on Environmental Science, Advances in Biomedical Engineering, Kuala Lumpur, Malaysia, 6 (2012) 323–329.
  11. P. Kwangyong, L. Warangkana, J. Seokwon, L.K. Young, Adsorptive Removal of Phosphate from Wastewater using Mesoporous Titanium Oxide, The 2016 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM16), Jeju Island, Korea, 2016.
  12. J.W. Choi, S.Y. Lee, K.Y. Park, K.B. Lee, D.J. Kim, S.H. Lee, Investigation of phosphorus removal from wastewater through ion exchange of mesostructure based on inorganic material, Desalination, 266 (2011) 281–285.
  13. P.G. Tratnyek, R.L. Johnson, Nanotechnologies for environmental cleanup, Nano Today, 1 (2006) 44–48.
  14. N.C. Mueller, J. Braun, J. Bruns, M. Černík, P. Rissing, D. Rickerby, B. Nowack, Application of nanoscale zero valent iron (nZVI) for groundwater remediation in Europe, Environ. Sci. Pollut. Res., 19 (2012) 550–558.
  15. R. Mukherjee, R. Kumar, A. Sinha, Y. Lama, A.K. Saha, A review on synthesis, characterization, and applications of nano zerovalent iron (nZVI) for environmental remediation, Crit. Rev. Env. Sci. Technol., 46 (2016) 443–466.
  16. W.X. Zhang, D.W. Elliott, Applications of iron nanoparticles for groundwater remediation, Rem. J. Environ. Cleanup Costs Technol. Tech., (2006), https://doi.org/10.1002/rem.20078.
  17. N.C. Mueller, B. Nowack, Nanoparticles for remediation: solving big problems with little particles, Elements, 6 (2010) 395–400.
  18. Z. Wen, Y. Zhang, C. Dai, Removal of phosphate from aqueous solution using nanoscale zerovalent iron (nZVI), Colloids Surf., A, 457 (2014) 433–440.
  19. S. Wu, D. Shen, Y. Ding, A. Qiu, M. Yang, Q. Zheng, Phosphate removal from aqueous solutions by nanoscale zero-valent iron, Environ. Technol., 34 (2013) 2663–2669.
  20. T.Y. Liu, L. Zhao, Z.L. Wang, Removal of hexavalent chromium from wastewater by Fe0-nanoparticles-chitosan composite beads: characterization, kinetics, and thermodynamics, Water Sci. Technol., 66 (2012) 1044–1051.
  21. B. Geng, Z. Jin, T. Li, X. Qi, Preparation of chitosan-stabilized Fe0 nanoparticles for removal of hexavalent chromium in water, Sci. Total Environ., 407 (2009) 4994–5000.
  22. B. Geng, Z. Jin, T. Li, X. Qi, Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles, Chemosphere, 75 (2009) 825–830.
  23. G. Unsoy, S. Yalcin, R. Khodadust, G. Gunduz, U. Gunduz, Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications, J. Nanopart. Res., 14 (2012) 1–13.
  24. T. Almeelbi, A. Bezbaruah, Aqueous phosphate removal using nanoscale zero-valent iron, J. Nanopart. Res., (2014) 197–210, doi: 10.1007/s11051–012–0900-y.
  25. S. Nagoya, S. Nakamichi, Y. Kawase, Mechanisms of phosphate removal from aqueous solution by zero-valent iron: a novel kinetic model for electrostatic adsorption, surface complexation and precipitation of phosphate under oxic conditions, Sep. Purif. Technol., 218 (2019) 120–129.
  26. D.-G. Kim, Y.-H. Hwang, H.-S. Shin, S.-O. Ko, Kinetics of nitrate adsorption and reduction by nano-scale zero-valent iron (nZVI): Effect of ionic strength and initial pH, KSCE J. Civ. Eng., 20 (2016) 175–187.
  27. G. Vijayakumar, R. Tamilarasan, M. Dharmendirakumar, Adsorption, kinetic, equilibrium and thermodynamic studies on the removal of basic dye Rhodamine-B from aqueous solution by the use of natural adsorbent perlite, J. Mater. Environ. Sci., 3 (2012) 157–170.